mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
165 lines
5.4 KiB
C++
165 lines
5.4 KiB
C++
#pragma once
|
|
|
|
#include "caffe2/core/context.h"
|
|
#include "caffe2/core/init.h"
|
|
#include "caffe2/core/logging.h"
|
|
#include "caffe2/core/net.h"
|
|
#include "caffe2/core/operator.h"
|
|
#include "caffe2/core/scope_guard.h"
|
|
#include "caffe2/core/types.h"
|
|
#include "caffe2/core/workspace.h"
|
|
#include "caffe2/proto/caffe2.pb.h"
|
|
|
|
#include <pybind11/pybind11.h>
|
|
|
|
#include <Python.h>
|
|
#define NPY_NO_DEPRECATED_API NPY_1_7_API_VERSION
|
|
#define PY_ARRAY_UNIQUE_SYMBOL caffe2_python_ARRAY_API
|
|
#include <numpy/arrayobject.h>
|
|
|
|
namespace caffe2 {
|
|
|
|
// Add methods common to both CPU and GPU mode.
|
|
void addGlobalMethods(pybind11::module& m);
|
|
// Expose Workspace, Net, Blob
|
|
void addObjectMethods(pybind11::module& m);
|
|
|
|
class BlobFetcherBase {
|
|
public:
|
|
virtual ~BlobFetcherBase();
|
|
virtual pybind11::object Fetch(const Blob& blob) = 0;
|
|
};
|
|
|
|
class BlobFeederBase {
|
|
public:
|
|
virtual ~BlobFeederBase();
|
|
virtual void
|
|
Feed(const DeviceOption& option, PyArrayObject* array, Blob* blob) = 0;
|
|
};
|
|
|
|
CAFFE_DECLARE_TYPED_REGISTRY(BlobFetcherRegistry, CaffeTypeId, BlobFetcherBase);
|
|
#define REGISTER_BLOB_FETCHER(id, ...) \
|
|
CAFFE_REGISTER_TYPED_CLASS(BlobFetcherRegistry, id, __VA_ARGS__)
|
|
inline unique_ptr<BlobFetcherBase> CreateFetcher(CaffeTypeId id) {
|
|
return BlobFetcherRegistry()->Create(id);
|
|
}
|
|
|
|
CAFFE_DECLARE_TYPED_REGISTRY(BlobFeederRegistry, int, BlobFeederBase);
|
|
#define REGISTER_BLOB_FEEDER(device_type, ...) \
|
|
CAFFE_REGISTER_TYPED_CLASS(BlobFeederRegistry, device_type, __VA_ARGS__)
|
|
inline unique_ptr<BlobFeederBase> CreateFeeder(int device_type) {
|
|
return BlobFeederRegistry()->Create(device_type);
|
|
}
|
|
|
|
static_assert(
|
|
sizeof(int) == sizeof(int32_t),
|
|
"We make an assumption that int is always int32 for numpy "
|
|
"type mapping.");
|
|
|
|
int CaffeToNumpyType(const TypeMeta& meta);
|
|
const TypeMeta& NumpyTypeToCaffe(int numpy_type);
|
|
|
|
template <class Context>
|
|
class TensorFetcher : public BlobFetcherBase {
|
|
public:
|
|
pybind11::object Fetch(const Blob& blob) override {
|
|
const Tensor<Context>& tensor = blob.Get<Tensor<Context>>();
|
|
Context context;
|
|
CHECK_GE(tensor.size(), 0);
|
|
std::vector<npy_intp> npy_dims;
|
|
for (const auto dim : tensor.dims()) {
|
|
npy_dims.push_back(dim);
|
|
}
|
|
int numpy_type = CaffeToNumpyType(tensor.meta());
|
|
CAFFE_ENFORCE(
|
|
numpy_type != -1,
|
|
"This tensor's data type is not supported: ",
|
|
tensor.meta().name(),
|
|
".");
|
|
PyObject* array =
|
|
PyArray_SimpleNew(tensor.ndim(), npy_dims.data(), numpy_type);
|
|
void* outPtr = static_cast<void*>(
|
|
PyArray_DATA(reinterpret_cast<PyArrayObject*>(array)));
|
|
|
|
if (numpy_type == NPY_OBJECT) {
|
|
PyObject** outObj = reinterpret_cast<PyObject**>(outPtr);
|
|
auto* str = tensor.template data<std::string>();
|
|
for (int i = 0; i < tensor.size(); ++i) {
|
|
outObj[i] = PyBytes_FromStringAndSize(str->data(), str->size());
|
|
str++;
|
|
// cleanup on failure
|
|
if (outObj[i] == nullptr) {
|
|
for (int j = 0; j < i; ++j) {
|
|
Py_DECREF(outObj[j]);
|
|
}
|
|
Py_DECREF(array);
|
|
CAFFE_THROW("Failed to allocate string for ndarray of strings.");
|
|
}
|
|
}
|
|
// TODO - is this refcounted correctly?
|
|
return pybind11::object(array, /* borrowed= */ false);
|
|
}
|
|
|
|
// Now, copy the data to the tensor.
|
|
// TODO(Yangqing): Right now, to make things consistent between CPU and
|
|
// GPU, we always do a data copy. This is not necessary for CPU and
|
|
// read-only cases, so we may want to make it a non-copy.
|
|
context.template CopyBytes<Context, CPUContext>(
|
|
tensor.nbytes(), tensor.raw_data(), outPtr);
|
|
context.FinishDeviceComputation();
|
|
return pybind11::object(array, /* borrowed= */ false);
|
|
}
|
|
};
|
|
|
|
template <class Context>
|
|
class TensorFeeder : public BlobFeederBase {
|
|
public:
|
|
virtual void
|
|
Feed(const DeviceOption& option, PyArrayObject* original_array, Blob* blob) {
|
|
PyArrayObject* array = PyArray_GETCONTIGUOUS(original_array);
|
|
auto g = MakeGuard([&]() { Py_XDECREF(array); });
|
|
|
|
const auto npy_type = PyArray_TYPE(array);
|
|
const TypeMeta& meta = NumpyTypeToCaffe(npy_type);
|
|
CAFFE_ENFORCE(
|
|
meta.id() != 0,
|
|
"This numpy data type is not supported: ",
|
|
PyArray_TYPE(array),
|
|
".");
|
|
Context context(option);
|
|
context.SwitchToDevice();
|
|
Tensor<Context>* tensor = blob->GetMutable<Tensor<Context>>();
|
|
// numpy requires long int as its dims.
|
|
int ndim = PyArray_NDIM(array);
|
|
npy_intp* npy_dims = PyArray_DIMS(array);
|
|
std::vector<TIndex> dims;
|
|
for (int i = 0; i < ndim; ++i) {
|
|
dims.push_back(npy_dims[i]);
|
|
}
|
|
tensor->Resize(dims);
|
|
|
|
// Now, copy the data to the tensor.
|
|
switch (npy_type) {
|
|
case NPY_OBJECT: {
|
|
PyObject** input = reinterpret_cast<PyObject**>(PyArray_DATA(array));
|
|
auto* outPtr = tensor->template mutable_data<std::string>();
|
|
for (int i = 0; i < tensor->size(); ++i) {
|
|
char* str;
|
|
Py_ssize_t strSize;
|
|
CAFFE_ENFORCE(
|
|
PyBytes_AsStringAndSize(input[i], &str, &strSize) != -1,
|
|
"Unsupported python object type passed into ndarray.");
|
|
outPtr[i] = std::string(str, strSize);
|
|
}
|
|
} break;
|
|
default:
|
|
context.template CopyBytes<CPUContext, Context>(
|
|
tensor->size() * meta.itemsize(),
|
|
static_cast<void*>(PyArray_DATA(array)),
|
|
tensor->raw_mutable_data(meta));
|
|
}
|
|
context.FinishDeviceComputation();
|
|
}
|
|
};
|
|
}
|