mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: We want to store the file names that triggers each test suite so that we can use this data for categorizing those test files. ~~After considering several solutions, this one is the most backwards compatible, and the current test cases in test_testing.py for print test stats don't break.~~ The previous plan did not work, as there are multiple Python test jobs that spawn the same suites. Instead, the new S3 format will store test files (e.g., `test_nn` and `distributed/test_distributed_fork`) which will contain the suites they spawn, which will contain the test cases run within the suite. (Currently, there is no top layer of test files.) Because of this major structural change, a lot of changes have now been made (thank you samestep!) to test_history.py and print_test_stats.py to make this new format backwards compatible. Old test plan: Make sure that the data is as expected in S3 after https://github.com/pytorch/pytorch/pull/52873 finishes. Pull Request resolved: https://github.com/pytorch/pytorch/pull/52869 Test Plan: Added tests to test_testing.py which pass, and CI. Reviewed By: samestep Differential Revision: D26672561 Pulled By: janeyx99 fbshipit-source-id: f46b91e16c1d9de5e0cb9bfa648b6448d979257e
1310 lines
48 KiB
Python
1310 lines
48 KiB
Python
import torch
|
|
|
|
import math
|
|
from pathlib import PurePosixPath
|
|
|
|
from torch.testing._internal.common_utils import \
|
|
(TestCase, make_tensor, run_tests, slowTest)
|
|
from torch.testing._internal.common_device_type import \
|
|
(instantiate_device_type_tests, onlyCUDA, onlyOnCPUAndCUDA, dtypes)
|
|
from torch.testing._internal import mypy_wrapper
|
|
from torch.testing._internal import print_test_stats
|
|
|
|
# For testing TestCase methods and torch.testing functions
|
|
class TestTesting(TestCase):
|
|
# Ensure that assertEqual handles numpy arrays properly
|
|
@dtypes(*(torch.testing.get_all_dtypes(include_half=True, include_bfloat16=False,
|
|
include_bool=True, include_complex=True)))
|
|
def test_assertEqual_numpy(self, device, dtype):
|
|
S = 10
|
|
test_sizes = [
|
|
(),
|
|
(0,),
|
|
(S,),
|
|
(S, S),
|
|
(0, S),
|
|
(S, 0)]
|
|
for test_size in test_sizes:
|
|
a = make_tensor(test_size, device, dtype, low=-5, high=5)
|
|
a_n = a.cpu().numpy()
|
|
msg = f'size: {test_size}'
|
|
self.assertEqual(a_n, a, rtol=0, atol=0, msg=msg)
|
|
self.assertEqual(a, a_n, rtol=0, atol=0, msg=msg)
|
|
self.assertEqual(a_n, a_n, rtol=0, atol=0, msg=msg)
|
|
|
|
# Tests that when rtol or atol (including self.precision) is set, then
|
|
# the other is zeroed.
|
|
# TODO: this is legacy behavior and should be updated after test
|
|
# precisions are reviewed to be consistent with torch.isclose.
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparetensors_legacy(self, device):
|
|
a = torch.tensor((10000000.,))
|
|
b = torch.tensor((10000002.,))
|
|
|
|
x = torch.tensor((1.,))
|
|
y = torch.tensor((1. + 1e-5,))
|
|
|
|
# Helper for reusing the tensor values as scalars
|
|
def _scalar_helper(a, b, rtol=None, atol=None):
|
|
return self._compareScalars(a.item(), b.item(), rtol=rtol, atol=atol)
|
|
|
|
for op in (self._compareTensors, _scalar_helper):
|
|
# Tests default
|
|
result, debug_msg = op(a, b)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting atol
|
|
result, debug_msg = op(a, b, atol=2, rtol=0)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting atol too small
|
|
result, debug_msg = op(a, b, atol=1, rtol=0)
|
|
self.assertFalse(result)
|
|
|
|
# Tests setting rtol too small
|
|
result, debug_msg = op(x, y, atol=0, rtol=1.05e-5)
|
|
self.assertTrue(result)
|
|
|
|
# Tests setting rtol too small
|
|
result, debug_msg = op(x, y, atol=0, rtol=1e-5)
|
|
self.assertFalse(result)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparescalars_debug_msg(self, device):
|
|
# float x float
|
|
result, debug_msg = self._compareScalars(4., 7.)
|
|
expected_msg = ("Comparing 4.0 and 7.0 gives a difference of 3.0, "
|
|
"but the allowed difference with rtol=1.3e-06 and "
|
|
"atol=1e-05 is only 1.9100000000000003e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x complex, real difference
|
|
result, debug_msg = self._compareScalars(complex(1, 3), complex(3, 1))
|
|
expected_msg = ("Comparing the real part 1.0 and 3.0 gives a difference "
|
|
"of 2.0, but the allowed difference with rtol=1.3e-06 "
|
|
"and atol=1e-05 is only 1.39e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x complex, imaginary difference
|
|
result, debug_msg = self._compareScalars(complex(1, 3), complex(1, 5.5))
|
|
expected_msg = ("Comparing the imaginary part 3.0 and 5.5 gives a "
|
|
"difference of 2.5, but the allowed difference with "
|
|
"rtol=1.3e-06 and atol=1e-05 is only 1.715e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# complex x int
|
|
result, debug_msg = self._compareScalars(complex(1, -2), 1)
|
|
expected_msg = ("Comparing the imaginary part -2.0 and 0.0 gives a "
|
|
"difference of 2.0, but the allowed difference with "
|
|
"rtol=1.3e-06 and atol=1e-05 is only 1e-05!")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# NaN x NaN, equal_nan=False
|
|
result, debug_msg = self._compareScalars(float('nan'), float('nan'), equal_nan=False)
|
|
expected_msg = ("Found nan and nan while comparing and either one is "
|
|
"nan and the other isn't, or both are nan and equal_nan "
|
|
"is False")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks that compareTensors provides the correct debug info
|
|
@onlyOnCPUAndCUDA
|
|
def test__comparetensors_debug_msg(self, device):
|
|
# Acquires atol that will be used
|
|
atol = max(1e-05, self.precision)
|
|
|
|
# Checks float tensor comparisons (2D tensor)
|
|
a = torch.tensor(((0, 6), (7, 9)), device=device, dtype=torch.float32)
|
|
b = torch.tensor(((0, 7), (7, 22)), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 4) "
|
|
"whose difference(s) exceeded the margin of error (including 0 nan comparisons). "
|
|
"The greatest difference was 13.0 (9.0 vs. 22.0), "
|
|
"which occurred at index (1, 1).").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks float tensor comparisons (with extremal values)
|
|
a = torch.tensor((float('inf'), 5, float('inf')), device=device, dtype=torch.float32)
|
|
b = torch.tensor((float('inf'), float('nan'), float('-inf')), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 3) "
|
|
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
|
|
"The greatest difference was nan (5.0 vs. nan), "
|
|
"which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks float tensor comparisons (with finite vs nan differences)
|
|
a = torch.tensor((20, -6), device=device, dtype=torch.float32)
|
|
b = torch.tensor((-1, float('nan')), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("With rtol=1.3e-06 and atol={0}, found 2 element(s) (out of 2) "
|
|
"whose difference(s) exceeded the margin of error (including 1 nan comparisons). "
|
|
"The greatest difference was nan (-6.0 vs. nan), "
|
|
"which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks int tensor comparisons (1D tensor)
|
|
a = torch.tensor((1, 2, 3, 4), device=device)
|
|
b = torch.tensor((2, 5, 3, 4), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Found 2 different element(s) (out of 4), "
|
|
"with the greatest difference of 3 (2 vs. 5) "
|
|
"occuring at index 1.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks bool tensor comparisons (0D tensor)
|
|
a = torch.tensor((True), device=device)
|
|
b = torch.tensor((False), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Found 1 different element(s) (out of 1), "
|
|
"with the greatest difference of 1 (1 vs. 0) "
|
|
"occuring at index 0.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks complex tensor comparisons (real part)
|
|
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
|
|
b = torch.tensor((1 - 1j, 1 + 3j), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Real parts failed to compare as equal! "
|
|
"With rtol=1.3e-06 and atol={0}, "
|
|
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
|
|
"margin of error (including 0 nan comparisons). The greatest difference was "
|
|
"3.0 (4.0 vs. 1.0), which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks complex tensor comparisons (imaginary part)
|
|
a = torch.tensor((1 - 1j, 4 + 3j), device=device)
|
|
b = torch.tensor((1 - 1j, 4 - 21j), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Imaginary parts failed to compare as equal! "
|
|
"With rtol=1.3e-06 and atol={0}, "
|
|
"found 1 element(s) (out of 2) whose difference(s) exceeded the "
|
|
"margin of error (including 0 nan comparisons). The greatest difference was "
|
|
"24.0 (3.0 vs. -21.0), which occurred at index 1.").format(atol)
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks size mismatch
|
|
a = torch.tensor((1, 2), device=device)
|
|
b = torch.tensor((3), device=device)
|
|
result, debug_msg = self._compareTensors(a, b)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"with different sizes. Got sizes torch.Size([2]) and torch.Size([]).")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks dtype mismatch
|
|
a = torch.tensor((1, 2), device=device, dtype=torch.long)
|
|
b = torch.tensor((1, 2), device=device, dtype=torch.float32)
|
|
result, debug_msg = self._compareTensors(a, b, exact_dtype=True)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"with different dtypes. Got dtypes torch.int64 and torch.float32.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Checks device mismatch
|
|
if self.device_type == 'cuda':
|
|
a = torch.tensor((5), device='cpu')
|
|
b = torch.tensor((5), device=device)
|
|
result, debug_msg = self._compareTensors(a, b, exact_device=True)
|
|
expected_msg = ("Attempted to compare equality of tensors "
|
|
"on different devices! Got devices cpu and cuda:0.")
|
|
self.assertEqual(debug_msg, expected_msg)
|
|
|
|
# Helper for testing _compareTensors and _compareScalars
|
|
# Works on single element tensors
|
|
def _comparetensors_helper(self, tests, device, dtype, equal_nan, exact_dtype=True, atol=1e-08, rtol=1e-05):
|
|
for test in tests:
|
|
a = torch.tensor((test[0],), device=device, dtype=dtype)
|
|
b = torch.tensor((test[1],), device=device, dtype=dtype)
|
|
|
|
# Tensor x Tensor comparison
|
|
compare_result, debug_msg = self._compareTensors(a, b, rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan,
|
|
exact_dtype=exact_dtype)
|
|
self.assertEqual(compare_result, test[2])
|
|
|
|
# Scalar x Scalar comparison
|
|
compare_result, debug_msg = self._compareScalars(a.item(), b.item(),
|
|
rtol=rtol, atol=atol,
|
|
equal_nan=equal_nan)
|
|
self.assertEqual(compare_result, test[2])
|
|
|
|
def _isclose_helper(self, tests, device, dtype, equal_nan, atol=1e-08, rtol=1e-05):
|
|
for test in tests:
|
|
a = torch.tensor((test[0],), device=device, dtype=dtype)
|
|
b = torch.tensor((test[1],), device=device, dtype=dtype)
|
|
|
|
actual = torch.isclose(a, b, equal_nan=equal_nan, atol=atol, rtol=rtol)
|
|
expected = test[2]
|
|
self.assertEqual(actual.item(), expected)
|
|
|
|
# torch.close is not implemented for bool tensors
|
|
# see https://github.com/pytorch/pytorch/issues/33048
|
|
def test_isclose_comparetensors_bool(self, device):
|
|
tests = (
|
|
(True, True, True),
|
|
(False, False, True),
|
|
(True, False, False),
|
|
(False, True, False),
|
|
)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
self._isclose_helper(tests, device, torch.bool, False)
|
|
|
|
self._comparetensors_helper(tests, device, torch.bool, False)
|
|
|
|
@dtypes(torch.uint8,
|
|
torch.int8, torch.int16, torch.int32, torch.int64)
|
|
def test_isclose_comparetensors_integer(self, device, dtype):
|
|
tests = (
|
|
(0, 0, True),
|
|
(0, 1, False),
|
|
(1, 0, False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
tests = [
|
|
(0, 1, True),
|
|
(1, 0, False),
|
|
(1, 3, True),
|
|
]
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
if dtype is torch.uint8:
|
|
tests = [
|
|
(-1, 1, False),
|
|
(1, -1, False)
|
|
]
|
|
else:
|
|
tests = [
|
|
(-1, 1, True),
|
|
(1, -1, True)
|
|
]
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=1.5, rtol=.5)
|
|
|
|
@onlyOnCPUAndCUDA
|
|
@dtypes(torch.float16, torch.float32, torch.float64)
|
|
def test_isclose_comparetensors_float(self, device, dtype):
|
|
tests = (
|
|
(0, 0, True),
|
|
(0, -1, False),
|
|
(float('inf'), float('inf'), True),
|
|
(-float('inf'), float('inf'), False),
|
|
(float('inf'), float('nan'), False),
|
|
(float('nan'), float('nan'), False),
|
|
(0, float('nan'), False),
|
|
(1, 1, True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
self._comparetensors_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
eps = 1e-2 if dtype is torch.half else 1e-6
|
|
tests = (
|
|
(0, 1, True),
|
|
(0, 1 + eps, False),
|
|
(1, 0, False),
|
|
(1, 3, True),
|
|
(1 - eps, 3, False),
|
|
(-.25, .5, True),
|
|
(-.25 - eps, .5, False),
|
|
(.25, -.5, True),
|
|
(.25 + eps, -.5, False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# equal_nan = True tests
|
|
tests = (
|
|
(0, float('nan'), False),
|
|
(float('inf'), float('nan'), False),
|
|
(float('nan'), float('nan'), True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, True)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, True)
|
|
|
|
# torch.close with equal_nan=True is not implemented for complex inputs
|
|
# see https://github.com/numpy/numpy/issues/15959
|
|
# Note: compareTensor will compare the real and imaginary parts of a
|
|
# complex tensors separately, unlike isclose.
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_isclose_comparetensors_complex(self, device, dtype):
|
|
tests = (
|
|
(complex(1, 1), complex(1, 1 + 1e-8), True),
|
|
(complex(0, 1), complex(1, 1), False),
|
|
(complex(1, 1), complex(1, 0), False),
|
|
(complex(1, 1), complex(1, float('nan')), False),
|
|
(complex(1, float('nan')), complex(1, float('nan')), False),
|
|
(complex(1, 1), complex(1, float('inf')), False),
|
|
(complex(float('inf'), 1), complex(1, float('inf')), False),
|
|
(complex(-float('inf'), 1), complex(1, float('inf')), False),
|
|
(complex(-float('inf'), 1), complex(float('inf'), 1), False),
|
|
(complex(float('inf'), 1), complex(float('inf'), 1), True),
|
|
(complex(float('inf'), 1), complex(float('inf'), 1 + 1e-4), False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False)
|
|
self._comparetensors_helper(tests, device, dtype, False)
|
|
|
|
# atol and rtol tests
|
|
|
|
# atol and rtol tests
|
|
eps = 1e-6
|
|
tests = (
|
|
# Complex versions of float tests (real part)
|
|
(complex(0, 0), complex(1, 0), True),
|
|
(complex(0, 0), complex(1 + eps, 0), False),
|
|
(complex(1, 0), complex(0, 0), False),
|
|
(complex(1, 0), complex(3, 0), True),
|
|
(complex(1 - eps, 0), complex(3, 0), False),
|
|
(complex(-.25, 0), complex(.5, 0), True),
|
|
(complex(-.25 - eps, 0), complex(.5, 0), False),
|
|
(complex(.25, 0), complex(-.5, 0), True),
|
|
(complex(.25 + eps, 0), complex(-.5, 0), False),
|
|
# Complex versions of float tests (imaginary part)
|
|
(complex(0, 0), complex(0, 1), True),
|
|
(complex(0, 0), complex(0, 1 + eps), False),
|
|
(complex(0, 1), complex(0, 0), False),
|
|
(complex(0, 1), complex(0, 3), True),
|
|
(complex(0, 1 - eps), complex(0, 3), False),
|
|
(complex(0, -.25), complex(0, .5), True),
|
|
(complex(0, -.25 - eps), complex(0, .5), False),
|
|
(complex(0, .25), complex(0, -.5), True),
|
|
(complex(0, .25 + eps), complex(0, -.5), False),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# atol and rtol tests for isclose
|
|
tests = (
|
|
# Complex-specific tests
|
|
(complex(1, -1), complex(-1, 1), False),
|
|
(complex(1, -1), complex(2, -2), True),
|
|
(complex(-math.sqrt(2), math.sqrt(2)),
|
|
complex(-math.sqrt(.5), math.sqrt(.5)), True),
|
|
(complex(-math.sqrt(2), math.sqrt(2)),
|
|
complex(-math.sqrt(.501), math.sqrt(.499)), False),
|
|
(complex(2, 4), complex(1., 8.8523607), True),
|
|
(complex(2, 4), complex(1., 8.8523607 + eps), False),
|
|
(complex(1, 99), complex(4, 100), True),
|
|
)
|
|
|
|
self._isclose_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# atol and rtol tests for compareTensors
|
|
tests = (
|
|
(complex(1, -1), complex(-1, 1), False),
|
|
(complex(1, -1), complex(2, -2), True),
|
|
(complex(1, 99), complex(4, 100), False),
|
|
)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, False, atol=.5, rtol=.5)
|
|
|
|
# equal_nan = True tests
|
|
tests = (
|
|
(complex(1, 1), complex(1, float('nan')), False),
|
|
(complex(float('nan'), 1), complex(1, float('nan')), False),
|
|
(complex(float('nan'), 1), complex(float('nan'), 1), True),
|
|
)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
self._isclose_helper(tests, device, dtype, True)
|
|
|
|
self._comparetensors_helper(tests, device, dtype, True)
|
|
|
|
# Tests that isclose with rtol or atol values less than zero throws a
|
|
# RuntimeError
|
|
@dtypes(torch.bool, torch.uint8,
|
|
torch.int8, torch.int16, torch.int32, torch.int64,
|
|
torch.float16, torch.float32, torch.float64)
|
|
def test_isclose_atol_rtol_greater_than_zero(self, device, dtype):
|
|
t = torch.tensor((1,), device=device, dtype=dtype)
|
|
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=-1, rtol=1)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=1, rtol=-1)
|
|
with self.assertRaises(RuntimeError):
|
|
torch.isclose(t, t, atol=-1, rtol=-1)
|
|
|
|
@dtypes(torch.bool, torch.long, torch.float, torch.cfloat)
|
|
def test_make_tensor(self, device, dtype):
|
|
def check(size, low, high, requires_grad, discontiguous):
|
|
t = make_tensor(size, device, dtype, low=low, high=high,
|
|
requires_grad=requires_grad, discontiguous=discontiguous)
|
|
|
|
self.assertEqual(t.shape, size)
|
|
self.assertEqual(t.device, torch.device(device))
|
|
self.assertEqual(t.dtype, dtype)
|
|
|
|
low = -9 if low is None else low
|
|
high = 9 if high is None else high
|
|
|
|
if t.numel() > 0 and dtype in [torch.long, torch.float]:
|
|
self.assertTrue(t.le(high).logical_and(t.ge(low)).all().item())
|
|
|
|
if dtype in [torch.float, torch.cfloat]:
|
|
self.assertEqual(t.requires_grad, requires_grad)
|
|
else:
|
|
self.assertFalse(t.requires_grad)
|
|
|
|
if t.numel() > 1:
|
|
self.assertEqual(t.is_contiguous(), not discontiguous)
|
|
else:
|
|
self.assertTrue(t.is_contiguous())
|
|
|
|
for size in (tuple(), (0,), (1,), (1, 1), (2,), (2, 3), (8, 16, 32)):
|
|
check(size, None, None, False, False)
|
|
check(size, 2, 4, True, True)
|
|
|
|
def test_assert_messages(self, device):
|
|
self.assertIsNone(self._get_assert_msg(msg=None))
|
|
self.assertEqual("\nno_debug_msg", self._get_assert_msg("no_debug_msg"))
|
|
self.assertEqual("no_user_msg", self._get_assert_msg(msg=None, debug_msg="no_user_msg"))
|
|
self.assertEqual("debug_msg\nuser_msg", self._get_assert_msg(msg="user_msg", debug_msg="debug_msg"))
|
|
|
|
# The following tests (test_cuda_assert_*) are added to ensure test suite terminates early
|
|
# when CUDA assert was thrown. Because all subsequent test will fail if that happens.
|
|
# These tests are slow because it spawn another process to run test suite.
|
|
# See: https://github.com/pytorch/pytorch/issues/49019
|
|
@onlyCUDA
|
|
@slowTest
|
|
def test_cuda_assert_should_stop_common_utils_test_suite(self, device):
|
|
# test to ensure common_utils.py override has early termination for CUDA.
|
|
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
|
|
#!/usr/bin/env python
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
|
|
|
|
class TestThatContainsCUDAAssertFailure(TestCase):
|
|
|
|
@slowTest
|
|
def test_throw_unrecoverable_cuda_exception(self):
|
|
x = torch.rand(10, device='cuda')
|
|
# cause unrecoverable CUDA exception, recoverable on CPU
|
|
y = x[torch.tensor([25])].cpu()
|
|
|
|
@slowTest
|
|
def test_trivial_passing_test_case_on_cpu_cuda(self):
|
|
x1 = torch.tensor([0., 1.], device='cuda')
|
|
x2 = torch.tensor([0., 1.], device='cpu')
|
|
self.assertEqual(x1, x2)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|
|
""")
|
|
# should capture CUDA error
|
|
self.assertIn('CUDA error: device-side assert triggered', stderr)
|
|
# should run only 1 test because it throws unrecoverable error.
|
|
self.assertIn('Ran 1 test', stderr)
|
|
|
|
|
|
@onlyCUDA
|
|
@slowTest
|
|
def test_cuda_assert_should_stop_common_device_type_test_suite(self, device):
|
|
# test to ensure common_device_type.py override has early termination for CUDA.
|
|
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
|
|
#!/usr/bin/env python
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import (TestCase, run_tests, slowTest)
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
|
|
class TestThatContainsCUDAAssertFailure(TestCase):
|
|
|
|
@slowTest
|
|
def test_throw_unrecoverable_cuda_exception(self, device):
|
|
x = torch.rand(10, device=device)
|
|
# cause unrecoverable CUDA exception, recoverable on CPU
|
|
y = x[torch.tensor([25])].cpu()
|
|
|
|
@slowTest
|
|
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
|
|
x1 = torch.tensor([0., 1.], device=device)
|
|
x2 = torch.tensor([0., 1.], device='cpu')
|
|
self.assertEqual(x1, x2)
|
|
|
|
instantiate_device_type_tests(
|
|
TestThatContainsCUDAAssertFailure,
|
|
globals(),
|
|
only_for='cuda'
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|
|
""")
|
|
# should capture CUDA error
|
|
self.assertIn('CUDA error: device-side assert triggered', stderr)
|
|
# should run only 1 test because it throws unrecoverable error.
|
|
self.assertIn('Ran 1 test', stderr)
|
|
|
|
|
|
@onlyCUDA
|
|
@slowTest
|
|
def test_cuda_assert_should_not_stop_common_distributed_test_suite(self, device):
|
|
# test to ensure common_distributed.py override should not early terminate CUDA.
|
|
stderr = TestCase.runWithPytorchAPIUsageStderr("""\
|
|
#!/usr/bin/env python
|
|
|
|
import torch
|
|
from torch.testing._internal.common_utils import (run_tests, slowTest)
|
|
from torch.testing._internal.common_device_type import instantiate_device_type_tests
|
|
from torch.testing._internal.common_distributed import MultiProcessTestCase
|
|
|
|
class TestThatContainsCUDAAssertFailure(MultiProcessTestCase):
|
|
|
|
@slowTest
|
|
def test_throw_unrecoverable_cuda_exception(self, device):
|
|
x = torch.rand(10, device=device)
|
|
# cause unrecoverable CUDA exception, recoverable on CPU
|
|
y = x[torch.tensor([25])].cpu()
|
|
|
|
@slowTest
|
|
def test_trivial_passing_test_case_on_cpu_cuda(self, device):
|
|
x1 = torch.tensor([0., 1.], device=device)
|
|
x2 = torch.tensor([0., 1.], device='cpu')
|
|
self.assertEqual(x1, x2)
|
|
|
|
instantiate_device_type_tests(
|
|
TestThatContainsCUDAAssertFailure,
|
|
globals(),
|
|
only_for='cuda'
|
|
)
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|
|
""")
|
|
# we are currently disabling CUDA early termination for distributed tests.
|
|
self.assertIn('Ran 2 test', stderr)
|
|
|
|
|
|
instantiate_device_type_tests(TestTesting, globals())
|
|
|
|
|
|
class TestMypyWrapper(TestCase):
|
|
def test_glob(self):
|
|
# can match individual files
|
|
self.assertTrue(mypy_wrapper.glob(
|
|
pattern='test/test_torch.py',
|
|
filename=PurePosixPath('test/test_torch.py'),
|
|
))
|
|
self.assertFalse(mypy_wrapper.glob(
|
|
pattern='test/test_torch.py',
|
|
filename=PurePosixPath('test/test_testing.py'),
|
|
))
|
|
|
|
# dir matters
|
|
self.assertFalse(mypy_wrapper.glob(
|
|
pattern='tools/codegen/utils.py',
|
|
filename=PurePosixPath('torch/nn/modules.py'),
|
|
))
|
|
self.assertTrue(mypy_wrapper.glob(
|
|
pattern='setup.py',
|
|
filename=PurePosixPath('setup.py'),
|
|
))
|
|
self.assertFalse(mypy_wrapper.glob(
|
|
pattern='setup.py',
|
|
filename=PurePosixPath('foo/setup.py'),
|
|
))
|
|
self.assertTrue(mypy_wrapper.glob(
|
|
pattern='foo/setup.py',
|
|
filename=PurePosixPath('foo/setup.py'),
|
|
))
|
|
|
|
# can match dirs
|
|
self.assertTrue(mypy_wrapper.glob(
|
|
pattern='torch',
|
|
filename=PurePosixPath('torch/random.py'),
|
|
))
|
|
self.assertTrue(mypy_wrapper.glob(
|
|
pattern='torch',
|
|
filename=PurePosixPath('torch/nn/cpp.py'),
|
|
))
|
|
self.assertFalse(mypy_wrapper.glob(
|
|
pattern='torch',
|
|
filename=PurePosixPath('tools/fast_nvcc/fast_nvcc.py'),
|
|
))
|
|
|
|
# can match wildcards
|
|
self.assertTrue(mypy_wrapper.glob(
|
|
pattern='tools/autograd/*.py',
|
|
filename=PurePosixPath('tools/autograd/gen_autograd.py'),
|
|
))
|
|
self.assertFalse(mypy_wrapper.glob(
|
|
pattern='tools/autograd/*.py',
|
|
filename=PurePosixPath('tools/autograd/deprecated.yaml'),
|
|
))
|
|
|
|
|
|
def fakehash(char):
|
|
return char * 40
|
|
|
|
|
|
def dummy_meta_meta() -> print_test_stats.ReportMetaMeta:
|
|
return {
|
|
'build_pr': '',
|
|
'build_tag': '',
|
|
'build_sha1': '',
|
|
'build_branch': '',
|
|
'build_job': '',
|
|
'build_workflow_id': '',
|
|
}
|
|
|
|
|
|
def makecase(name, seconds, *, errored=False, failed=False, skipped=False):
|
|
return {
|
|
'name': name,
|
|
'seconds': seconds,
|
|
'errored': errored,
|
|
'failed': failed,
|
|
'skipped': skipped,
|
|
}
|
|
|
|
|
|
def make_report_v1(tests) -> print_test_stats.Version1Report:
|
|
suites = {
|
|
suite_name: {
|
|
'total_seconds': sum(case['seconds'] for case in cases),
|
|
'cases': cases,
|
|
}
|
|
for suite_name, cases in tests.items()
|
|
}
|
|
return {
|
|
**dummy_meta_meta(),
|
|
'total_seconds': sum(s['total_seconds'] for s in suites.values()),
|
|
'suites': suites,
|
|
}
|
|
|
|
|
|
def make_case_v2(seconds, status=None) -> print_test_stats.Version2Case:
|
|
return {
|
|
'seconds': seconds,
|
|
'status': status,
|
|
}
|
|
|
|
|
|
def make_report_v2(tests) -> print_test_stats.Version2Report:
|
|
files = {}
|
|
for file_name, file_suites in tests.items():
|
|
suites = {
|
|
suite_name: {
|
|
'total_seconds': sum(case['seconds'] for case in cases.values()),
|
|
'cases': cases,
|
|
}
|
|
for suite_name, cases in file_suites.items()
|
|
}
|
|
files[file_name] = {
|
|
'suites': suites,
|
|
'total_seconds': sum(suite['total_seconds'] for suite in suites.values()),
|
|
}
|
|
return {
|
|
**dummy_meta_meta(),
|
|
'format_version': 2,
|
|
'total_seconds': sum(s['total_seconds'] for s in files.values()),
|
|
'files': files,
|
|
}
|
|
|
|
|
|
class TestPrintTestStats(TestCase):
|
|
maxDiff = None
|
|
|
|
version1_report: print_test_stats.Version1Report = make_report_v1({
|
|
# input ordering of the suites is ignored
|
|
'Grault': [
|
|
# not printed: status same and time similar
|
|
makecase('test_grault0', 4.78, failed=True),
|
|
# status same, but time increased a lot
|
|
makecase('test_grault2', 1.473, errored=True),
|
|
],
|
|
# individual tests times changed, not overall suite
|
|
'Qux': [
|
|
# input ordering of the test cases is ignored
|
|
makecase('test_qux1', 0.001, skipped=True),
|
|
makecase('test_qux6', 0.002, skipped=True),
|
|
# time in bounds, but status changed
|
|
makecase('test_qux4', 7.158, failed=True),
|
|
# not printed because it's the same as before
|
|
makecase('test_qux7', 0.003, skipped=True),
|
|
makecase('test_qux5', 11.968),
|
|
makecase('test_qux3', 23.496),
|
|
],
|
|
# new test suite
|
|
'Bar': [
|
|
makecase('test_bar2', 3.742, failed=True),
|
|
makecase('test_bar1', 50.447),
|
|
],
|
|
# overall suite time changed but no individual tests
|
|
'Norf': [
|
|
makecase('test_norf1', 3),
|
|
makecase('test_norf2', 3),
|
|
makecase('test_norf3', 3),
|
|
makecase('test_norf4', 3),
|
|
],
|
|
# suite doesn't show up if it doesn't change enough
|
|
'Foo': [
|
|
makecase('test_foo1', 42),
|
|
makecase('test_foo2', 56),
|
|
],
|
|
})
|
|
|
|
version2_report: print_test_stats.Version2Report = make_report_v2(
|
|
{
|
|
'test_a': {
|
|
'Grault': {
|
|
'test_grault0': make_case_v2(4.78, 'failed'),
|
|
'test_grault2': make_case_v2(1.473, 'errored'),
|
|
},
|
|
'Qux': {
|
|
'test_qux1': make_case_v2(0.001, 'skipped'),
|
|
'test_qux6': make_case_v2(0.002, 'skipped'),
|
|
'test_qux4': make_case_v2(7.158, 'failed'),
|
|
'test_qux7': make_case_v2(0.003, 'skipped'),
|
|
'test_qux8': make_case_v2(11.968),
|
|
'test_qux3': make_case_v2(23.496),
|
|
}
|
|
},
|
|
'test_b': {
|
|
'Bar': {
|
|
'test_bar2': make_case_v2(3.742, 'failed'),
|
|
'test_bar1': make_case_v2(50.447),
|
|
},
|
|
# overall suite time changed but no individual tests
|
|
'Norf': {
|
|
'test_norf1': make_case_v2(3),
|
|
'test_norf2': make_case_v2(3),
|
|
'test_norf3': make_case_v2(3),
|
|
'test_norf4': make_case_v2(3),
|
|
},
|
|
},
|
|
'test_c': {
|
|
'Foo': {
|
|
'test_foo1': make_case_v2(42),
|
|
'test_foo2': make_case_v2(56),
|
|
},
|
|
}
|
|
})
|
|
|
|
def test_simplify(self):
|
|
self.assertEqual(
|
|
{
|
|
'': {
|
|
'Bar': {
|
|
'test_bar1': {'seconds': 50.447, 'status': None},
|
|
'test_bar2': {'seconds': 3.742, 'status': 'failed'},
|
|
},
|
|
'Foo': {
|
|
'test_foo1': {'seconds': 42, 'status': None},
|
|
'test_foo2': {'seconds': 56, 'status': None},
|
|
},
|
|
'Grault': {
|
|
'test_grault0': {'seconds': 4.78, 'status': 'failed'},
|
|
'test_grault2': {'seconds': 1.473, 'status': 'errored'},
|
|
},
|
|
'Norf': {
|
|
'test_norf1': {'seconds': 3, 'status': None},
|
|
'test_norf3': {'seconds': 3, 'status': None},
|
|
'test_norf2': {'seconds': 3, 'status': None},
|
|
'test_norf4': {'seconds': 3, 'status': None},
|
|
},
|
|
'Qux': {
|
|
'test_qux1': {'seconds': 0.001, 'status': 'skipped'},
|
|
'test_qux3': {'seconds': 23.496, 'status': None},
|
|
'test_qux4': {'seconds': 7.158, 'status': 'failed'},
|
|
'test_qux5': {'seconds': 11.968, 'status': None},
|
|
'test_qux6': {'seconds': 0.002, 'status': 'skipped'},
|
|
'test_qux7': {'seconds': 0.003, 'status': 'skipped'},
|
|
},
|
|
},
|
|
},
|
|
print_test_stats.simplify(self.version1_report)
|
|
)
|
|
|
|
self.assertEqual(
|
|
{
|
|
'test_a': {
|
|
'Grault': {
|
|
'test_grault0': {'seconds': 4.78, 'status': 'failed'},
|
|
'test_grault2': {'seconds': 1.473, 'status': 'errored'},
|
|
},
|
|
'Qux': {
|
|
'test_qux1': {'seconds': 0.001, 'status': 'skipped'},
|
|
'test_qux3': {'seconds': 23.496, 'status': None},
|
|
'test_qux4': {'seconds': 7.158, 'status': 'failed'},
|
|
'test_qux6': {'seconds': 0.002, 'status': 'skipped'},
|
|
'test_qux7': {'seconds': 0.003, 'status': 'skipped'},
|
|
'test_qux8': {'seconds': 11.968, 'status': None},
|
|
},
|
|
},
|
|
'test_b': {
|
|
'Bar': {
|
|
'test_bar1': {'seconds': 50.447, 'status': None},
|
|
'test_bar2': {'seconds': 3.742, 'status': 'failed'},
|
|
},
|
|
'Norf': {
|
|
'test_norf1': {'seconds': 3, 'status': None},
|
|
'test_norf2': {'seconds': 3, 'status': None},
|
|
'test_norf3': {'seconds': 3, 'status': None},
|
|
'test_norf4': {'seconds': 3, 'status': None},
|
|
},
|
|
},
|
|
'test_c': {
|
|
'Foo': {
|
|
'test_foo1': {'seconds': 42, 'status': None},
|
|
'test_foo2': {'seconds': 56, 'status': None},
|
|
},
|
|
},
|
|
},
|
|
print_test_stats.simplify(self.version2_report),
|
|
)
|
|
|
|
def test_analysis(self):
|
|
head_report = self.version1_report
|
|
|
|
base_reports = {
|
|
# bbbb has no reports, so base is cccc instead
|
|
fakehash('b'): [],
|
|
fakehash('c'): [
|
|
make_report_v1({
|
|
'Baz': [
|
|
makecase('test_baz2', 13.605),
|
|
# no recent suites have & skip this test
|
|
makecase('test_baz1', 0.004, skipped=True),
|
|
],
|
|
'Foo': [
|
|
makecase('test_foo1', 43),
|
|
# test added since dddd
|
|
makecase('test_foo2', 57),
|
|
],
|
|
'Grault': [
|
|
makecase('test_grault0', 4.88, failed=True),
|
|
makecase('test_grault1', 11.967, failed=True),
|
|
makecase('test_grault2', 0.395, errored=True),
|
|
makecase('test_grault3', 30.460),
|
|
],
|
|
'Norf': [
|
|
makecase('test_norf1', 2),
|
|
makecase('test_norf2', 2),
|
|
makecase('test_norf3', 2),
|
|
makecase('test_norf4', 2),
|
|
],
|
|
'Qux': [
|
|
makecase('test_qux3', 4.978, errored=True),
|
|
makecase('test_qux7', 0.002, skipped=True),
|
|
makecase('test_qux2', 5.618),
|
|
makecase('test_qux4', 7.766, errored=True),
|
|
makecase('test_qux6', 23.589, failed=True),
|
|
],
|
|
}),
|
|
],
|
|
fakehash('d'): [
|
|
make_report_v1({
|
|
'Foo': [
|
|
makecase('test_foo1', 40),
|
|
# removed in cccc
|
|
makecase('test_foo3', 17),
|
|
],
|
|
'Baz': [
|
|
# not skipped, so not included in stdev
|
|
makecase('test_baz1', 3.14),
|
|
],
|
|
'Qux': [
|
|
makecase('test_qux7', 0.004, skipped=True),
|
|
makecase('test_qux2', 6.02),
|
|
makecase('test_qux4', 20.932),
|
|
],
|
|
'Norf': [
|
|
makecase('test_norf1', 3),
|
|
makecase('test_norf2', 3),
|
|
makecase('test_norf3', 3),
|
|
makecase('test_norf4', 3),
|
|
],
|
|
'Grault': [
|
|
makecase('test_grault0', 5, failed=True),
|
|
makecase('test_grault1', 14.325, failed=True),
|
|
makecase('test_grault2', 0.31, errored=True),
|
|
],
|
|
}),
|
|
],
|
|
fakehash('e'): [],
|
|
fakehash('f'): [
|
|
make_report_v1({
|
|
'Foo': [
|
|
makecase('test_foo3', 24),
|
|
makecase('test_foo1', 43),
|
|
],
|
|
'Baz': [
|
|
makecase('test_baz2', 16.857),
|
|
],
|
|
'Qux': [
|
|
makecase('test_qux2', 6.422),
|
|
makecase('test_qux4', 6.382, errored=True),
|
|
],
|
|
'Norf': [
|
|
makecase('test_norf1', 0.9),
|
|
makecase('test_norf3', 0.9),
|
|
makecase('test_norf2', 0.9),
|
|
makecase('test_norf4', 0.9),
|
|
],
|
|
'Grault': [
|
|
makecase('test_grault0', 4.7, failed=True),
|
|
makecase('test_grault1', 13.146, failed=True),
|
|
makecase('test_grault2', 0.48, errored=True),
|
|
],
|
|
}),
|
|
],
|
|
}
|
|
|
|
simpler_head = print_test_stats.simplify(head_report)
|
|
simpler_base = {}
|
|
for commit, reports in base_reports.items():
|
|
simpler_base[commit] = [print_test_stats.simplify(r) for r in reports]
|
|
analysis = print_test_stats.analyze(
|
|
head_report=simpler_head,
|
|
base_reports=simpler_base,
|
|
)
|
|
|
|
self.assertEqual(
|
|
'''\
|
|
|
|
- class Baz:
|
|
- # was 15.23s ± 2.30s
|
|
-
|
|
- def test_baz1: ...
|
|
- # was 0.004s (skipped)
|
|
-
|
|
- def test_baz2: ...
|
|
- # was 15.231s ± 2.300s
|
|
|
|
|
|
class Grault:
|
|
# was 48.86s ± 1.19s
|
|
# now 6.25s
|
|
|
|
- def test_grault1: ...
|
|
- # was 13.146s ± 1.179s (failed)
|
|
|
|
- def test_grault3: ...
|
|
- # was 30.460s
|
|
|
|
|
|
class Qux:
|
|
# was 41.66s ± 1.06s
|
|
# now 42.63s
|
|
|
|
- def test_qux2: ...
|
|
- # was 6.020s ± 0.402s
|
|
|
|
! def test_qux3: ...
|
|
! # was 4.978s (errored)
|
|
! # now 23.496s
|
|
|
|
! def test_qux4: ...
|
|
! # was 7.074s ± 0.979s (errored)
|
|
! # now 7.158s (failed)
|
|
|
|
! def test_qux6: ...
|
|
! # was 23.589s (failed)
|
|
! # now 0.002s (skipped)
|
|
|
|
+ def test_qux1: ...
|
|
+ # now 0.001s (skipped)
|
|
|
|
+ def test_qux5: ...
|
|
+ # now 11.968s
|
|
|
|
|
|
+ class Bar:
|
|
+ # now 54.19s
|
|
+
|
|
+ def test_bar1: ...
|
|
+ # now 50.447s
|
|
+
|
|
+ def test_bar2: ...
|
|
+ # now 3.742s (failed)
|
|
|
|
''',
|
|
print_test_stats.anomalies(analysis),
|
|
)
|
|
|
|
def test_graph(self):
|
|
# HEAD is on master
|
|
self.assertEqual(
|
|
'''\
|
|
Commit graph (base is most recent master ancestor with at least one S3 report):
|
|
|
|
: (master)
|
|
|
|
|
* aaaaaaaaaa (HEAD) total time 502.99s
|
|
* bbbbbbbbbb (base) 1 report, total time 47.84s
|
|
* cccccccccc 1 report, total time 332.50s
|
|
* dddddddddd 0 reports
|
|
|
|
|
:
|
|
''',
|
|
print_test_stats.graph(
|
|
head_sha=fakehash('a'),
|
|
head_seconds=502.99,
|
|
base_seconds={
|
|
fakehash('b'): [47.84],
|
|
fakehash('c'): [332.50],
|
|
fakehash('d'): [],
|
|
},
|
|
on_master=True,
|
|
)
|
|
)
|
|
|
|
self.assertEqual(
|
|
'''\
|
|
Commit graph (base is most recent master ancestor with at least one S3 report):
|
|
|
|
: (master)
|
|
|
|
|
| * aaaaaaaaaa (HEAD) total time 9988.77s
|
|
|/
|
|
* bbbbbbbbbb (base) 121 reports, total time 7654.32s ± 55.55s
|
|
* cccccccccc 20 reports, total time 5555.55s ± 253.19s
|
|
* dddddddddd 1 report, total time 1234.56s
|
|
|
|
|
:
|
|
''',
|
|
print_test_stats.graph(
|
|
head_sha=fakehash('a'),
|
|
head_seconds=9988.77,
|
|
base_seconds={
|
|
fakehash('b'): [7598.77] * 60 + [7654.32] + [7709.87] * 60,
|
|
fakehash('c'): [5308.77] * 10 + [5802.33] * 10,
|
|
fakehash('d'): [1234.56],
|
|
},
|
|
on_master=False,
|
|
)
|
|
)
|
|
|
|
self.assertEqual(
|
|
'''\
|
|
Commit graph (base is most recent master ancestor with at least one S3 report):
|
|
|
|
: (master)
|
|
|
|
|
| * aaaaaaaaaa (HEAD) total time 25.52s
|
|
| |
|
|
| : (5 commits)
|
|
|/
|
|
* bbbbbbbbbb 0 reports
|
|
* cccccccccc 0 reports
|
|
* dddddddddd (base) 15 reports, total time 58.92s ± 25.82s
|
|
|
|
|
:
|
|
''',
|
|
print_test_stats.graph(
|
|
head_sha=fakehash('a'),
|
|
head_seconds=25.52,
|
|
base_seconds={
|
|
fakehash('b'): [],
|
|
fakehash('c'): [],
|
|
fakehash('d'): [52.25] * 14 + [152.26],
|
|
},
|
|
on_master=False,
|
|
ancestry_path=5,
|
|
)
|
|
)
|
|
|
|
self.assertEqual(
|
|
'''\
|
|
Commit graph (base is most recent master ancestor with at least one S3 report):
|
|
|
|
: (master)
|
|
|
|
|
| * aaaaaaaaaa (HEAD) total time 0.08s
|
|
|/|
|
|
| : (1 commit)
|
|
|
|
|
* bbbbbbbbbb 0 reports
|
|
* cccccccccc (base) 1 report, total time 0.09s
|
|
* dddddddddd 3 reports, total time 0.10s ± 0.05s
|
|
|
|
|
:
|
|
''',
|
|
print_test_stats.graph(
|
|
head_sha=fakehash('a'),
|
|
head_seconds=0.08,
|
|
base_seconds={
|
|
fakehash('b'): [],
|
|
fakehash('c'): [0.09],
|
|
fakehash('d'): [0.05, 0.10, 0.15],
|
|
},
|
|
on_master=False,
|
|
other_ancestors=1,
|
|
)
|
|
)
|
|
|
|
self.assertEqual(
|
|
'''\
|
|
Commit graph (base is most recent master ancestor with at least one S3 report):
|
|
|
|
: (master)
|
|
|
|
|
| * aaaaaaaaaa (HEAD) total time 5.98s
|
|
| |
|
|
| : (1 commit)
|
|
|/|
|
|
| : (7 commits)
|
|
|
|
|
* bbbbbbbbbb (base) 2 reports, total time 6.02s ± 1.71s
|
|
* cccccccccc 0 reports
|
|
* dddddddddd 10 reports, total time 5.84s ± 0.92s
|
|
|
|
|
:
|
|
''',
|
|
print_test_stats.graph(
|
|
head_sha=fakehash('a'),
|
|
head_seconds=5.98,
|
|
base_seconds={
|
|
fakehash('b'): [4.81, 7.23],
|
|
fakehash('c'): [],
|
|
fakehash('d'): [4.97] * 5 + [6.71] * 5,
|
|
},
|
|
on_master=False,
|
|
ancestry_path=1,
|
|
other_ancestors=7,
|
|
)
|
|
)
|
|
|
|
def test_regression_info(self):
|
|
self.assertEqual(
|
|
'''\
|
|
----- Historic stats comparison result ------
|
|
|
|
job: foo_job
|
|
commit: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
|
|
|
|
|
|
class Foo:
|
|
# was 42.50s ± 2.12s
|
|
# now 3.02s
|
|
|
|
- def test_bar: ...
|
|
- # was 1.000s
|
|
|
|
! def test_foo: ...
|
|
! # was 41.500s ± 2.121s
|
|
! # now 0.020s (skipped)
|
|
|
|
+ def test_baz: ...
|
|
+ # now 3.000s
|
|
|
|
|
|
Commit graph (base is most recent master ancestor with at least one S3 report):
|
|
|
|
: (master)
|
|
|
|
|
| * aaaaaaaaaa (HEAD) total time 3.02s
|
|
|/
|
|
* bbbbbbbbbb (base) 1 report, total time 41.00s
|
|
* cccccccccc 1 report, total time 43.00s
|
|
|
|
|
:
|
|
|
|
Removed (across 1 suite) 1 test, totaling - 1.00s
|
|
Modified (across 1 suite) 1 test, totaling - 41.48s ± 2.12s
|
|
Added (across 1 suite) 1 test, totaling + 3.00s
|
|
''',
|
|
print_test_stats.regression_info(
|
|
head_sha=fakehash('a'),
|
|
head_report=make_report_v1({
|
|
'Foo': [
|
|
makecase('test_foo', 0.02, skipped=True),
|
|
makecase('test_baz', 3),
|
|
]}),
|
|
base_reports={
|
|
fakehash('b'): [
|
|
make_report_v1({
|
|
'Foo': [
|
|
makecase('test_foo', 40),
|
|
makecase('test_bar', 1),
|
|
],
|
|
}),
|
|
],
|
|
fakehash('c'): [
|
|
make_report_v1({
|
|
'Foo': [
|
|
makecase('test_foo', 43),
|
|
],
|
|
}),
|
|
],
|
|
},
|
|
job_name='foo_job',
|
|
on_master=False,
|
|
ancestry_path=0,
|
|
other_ancestors=0,
|
|
)
|
|
)
|
|
|
|
def test_regression_info_new_job(self):
|
|
self.assertEqual(
|
|
'''\
|
|
----- Historic stats comparison result ------
|
|
|
|
job: foo_job
|
|
commit: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
|
|
|
|
|
|
+ class Foo:
|
|
+ # now 3.02s
|
|
+
|
|
+ def test_baz: ...
|
|
+ # now 3.000s
|
|
+
|
|
+ def test_foo: ...
|
|
+ # now 0.020s (skipped)
|
|
|
|
|
|
Commit graph (base is most recent master ancestor with at least one S3 report):
|
|
|
|
: (master)
|
|
|
|
|
| * aaaaaaaaaa (HEAD) total time 3.02s
|
|
| |
|
|
| : (3 commits)
|
|
|/|
|
|
| : (2 commits)
|
|
|
|
|
* bbbbbbbbbb 0 reports
|
|
* cccccccccc 0 reports
|
|
|
|
|
:
|
|
|
|
Removed (across 0 suites) 0 tests, totaling 0.00s
|
|
Modified (across 0 suites) 0 tests, totaling 0.00s
|
|
Added (across 1 suite) 2 tests, totaling + 3.02s
|
|
''',
|
|
print_test_stats.regression_info(
|
|
head_sha=fakehash('a'),
|
|
head_report=make_report_v1({
|
|
'Foo': [
|
|
makecase('test_foo', 0.02, skipped=True),
|
|
makecase('test_baz', 3),
|
|
]}),
|
|
base_reports={
|
|
fakehash('b'): [],
|
|
fakehash('c'): [],
|
|
},
|
|
job_name='foo_job',
|
|
on_master=False,
|
|
ancestry_path=3,
|
|
other_ancestors=2,
|
|
)
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_tests()
|