mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Action following https://github.com/pytorch/pytorch/issues/66232 Pull Request resolved: https://github.com/pytorch/pytorch/pull/66808 Reviewed By: mrshenli Differential Revision: D31761414 Pulled By: janeyx99 fbshipit-source-id: baf8c49ff9c4bcda7b0ea0f6aafd26380586e72d
129 lines
5.1 KiB
Python
129 lines
5.1 KiB
Python
# Owner(s): ["oncall: jit"]
|
|
|
|
import torch
|
|
import os
|
|
import sys
|
|
from torch.testing._internal.jit_utils import JitTestCase
|
|
from typing import Dict, Any, List
|
|
|
|
# Make the helper files in test/ importable
|
|
pytorch_test_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
|
sys.path.append(pytorch_test_dir)
|
|
|
|
if __name__ == '__main__':
|
|
raise RuntimeError("This test file is not meant to be run directly, use:\n\n"
|
|
"\tpython test/test_jit.py TESTNAME\n\n"
|
|
"instead.")
|
|
|
|
class TestModuleAPIs(JitTestCase):
|
|
def test_default_state_dict_methods(self):
|
|
"""Tests that default state dict methods are automatically available"""
|
|
|
|
class DefaultStateDictModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(6, 16, 5)
|
|
self.fc = torch.nn.Linear(16 * 5 * 5, 120)
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
m1 = torch.jit.script(DefaultStateDictModule())
|
|
m2 = torch.jit.script(DefaultStateDictModule())
|
|
state_dict = m1.state_dict()
|
|
m2.load_state_dict(state_dict)
|
|
|
|
def test_customized_state_dict_methods(self):
|
|
"""Tests that customized state dict methods are in effect"""
|
|
|
|
class CustomStateDictModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(6, 16, 5)
|
|
self.fc = torch.nn.Linear(16 * 5 * 5, 120)
|
|
self.customized_save_state_dict_called: bool = False
|
|
self.customized_load_state_dict_called: bool = False
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
@torch.jit.export
|
|
def _save_to_state_dict(self, destination: Dict[str, torch.Tensor],
|
|
prefix: str, keep_vars: bool):
|
|
self.customized_save_state_dict_called = True
|
|
return {"dummy": torch.ones(1)}
|
|
|
|
@torch.jit.export
|
|
def _load_from_state_dict(self,
|
|
state_dict: Dict[str, torch.Tensor],
|
|
prefix: str, local_metadata: Any,
|
|
strict: bool, missing_keys: List[str],
|
|
unexpected_keys: List[str],
|
|
error_msgs: List[str]):
|
|
self.customized_load_state_dict_called = True
|
|
return
|
|
|
|
m1 = torch.jit.script(CustomStateDictModule())
|
|
self.assertFalse(m1.customized_save_state_dict_called)
|
|
state_dict = m1.state_dict()
|
|
self.assertTrue(m1.customized_save_state_dict_called)
|
|
|
|
m2 = torch.jit.script(CustomStateDictModule())
|
|
self.assertFalse(m2.customized_load_state_dict_called)
|
|
m2.load_state_dict(state_dict)
|
|
self.assertTrue(m2.customized_load_state_dict_called)
|
|
|
|
def test_submodule_customized_state_dict_methods(self):
|
|
"""Tests that customized state dict methods on submodules are in effect"""
|
|
|
|
class CustomStateDictModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.conv = torch.nn.Conv2d(6, 16, 5)
|
|
self.fc = torch.nn.Linear(16 * 5 * 5, 120)
|
|
self.customized_save_state_dict_called: bool = False
|
|
self.customized_load_state_dict_called: bool = False
|
|
|
|
def forward(self, x):
|
|
x = self.conv(x)
|
|
x = self.fc(x)
|
|
return x
|
|
|
|
@torch.jit.export
|
|
def _save_to_state_dict(self, destination: Dict[str, torch.Tensor],
|
|
prefix: str, keep_vars: bool):
|
|
self.customized_save_state_dict_called = True
|
|
return {"dummy": torch.ones(1)}
|
|
|
|
@torch.jit.export
|
|
def _load_from_state_dict(self,
|
|
state_dict: Dict[str, torch.Tensor],
|
|
prefix: str, local_metadata: Any,
|
|
strict: bool, missing_keys: List[str],
|
|
unexpected_keys: List[str],
|
|
error_msgs: List[str]):
|
|
self.customized_load_state_dict_called = True
|
|
return
|
|
|
|
class ParentModule(torch.nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.sub = CustomStateDictModule()
|
|
|
|
def forward(self, x):
|
|
return self.sub(x)
|
|
|
|
m1 = torch.jit.script(ParentModule())
|
|
self.assertFalse(m1.sub.customized_save_state_dict_called)
|
|
state_dict = m1.state_dict()
|
|
self.assertTrue(m1.sub.customized_save_state_dict_called)
|
|
|
|
m2 = torch.jit.script(ParentModule())
|
|
self.assertFalse(m2.sub.customized_load_state_dict_called)
|
|
m2.load_state_dict(state_dict)
|
|
self.assertTrue(m2.sub.customized_load_state_dict_called)
|