pytorch/caffe2/python/operator_test/pooling_test.py
Ahmed Taei 09bfc8043b Generalize PoolingOp(CPU) to compute 1D, 2D and 3D pooling.
Summary: Extend the op compute 1D, 2D & 3D pooling.

Differential Revision: D4828691

fbshipit-source-id: 87540e82ed20d1361476cfbc43a708de9ca7a88e
2017-04-11 18:18:21 -07:00

205 lines
6.9 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from hypothesis import assume, given
import hypothesis.strategies as st
import os
import unittest
from caffe2.python import core
import caffe2.python.hypothesis_test_util as hu
class TestPooling(hu.HypothesisTestCase):
# CUDNN does NOT support different padding values and we skip it
@given(stride_h=st.integers(1, 3),
stride_w=st.integers(1, 3),
pad_t=st.integers(0, 3),
pad_l=st.integers(0, 3),
pad_b=st.integers(0, 3),
pad_r=st.integers(0, 3),
kernel=st.integers(3, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
method=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]),
**hu.gcs)
def test_pooling_separate_stride_pad(self, stride_h, stride_w,
pad_t, pad_l, pad_b,
pad_r, kernel, size,
input_channels,
batch_size, order,
method,
gc, dc):
assume(np.max([pad_t, pad_l, pad_b, pad_r]) < kernel)
op = core.CreateOperator(
method,
["X"],
["Y"],
stride_h=stride_h,
stride_w=stride_w,
pad_t=pad_t,
pad_l=pad_l,
pad_b=pad_b,
pad_r=pad_r,
kernel=kernel,
order=order,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if method not in ('MaxPool'):
self.assertGradientChecks(gc, op, [X], 0, [0])
# This test is to check if CUDNN works for bigger batch size or not
@unittest.skipIf(not os.getenv('CAFFE2_DEBUG'),
"This is a test that reproduces a cudnn error. If you "
"want to run it, set env variable CAFFE2_DEBUG=1.")
@given(**hu.gcs_gpu_only)
def test_pooling_big_batch(self, gc, dc):
op = core.CreateOperator(
"AveragePool",
["X"],
["Y"],
stride=1,
kernel=7,
pad=0,
order="NHWC",
engine="CUDNN",
)
X = np.random.rand(70000, 7, 7, 81).astype(np.float32)
self.assertDeviceChecks(dc, op, [X], [0])
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
method=st.sampled_from(["MaxPool", "AveragePool"]),
**hu.gcs_cpu_only)
def test_pooling_1d(self, stride, pad, kernel, size, input_channels,
batch_size, order, method, gc, dc):
assume(pad < kernel)
op = core.CreateOperator(
method,
["X"],
["Y"],
strides=[stride],
kernels=[kernel],
pads=[pad, pad],
order=order,
engine="",
)
X = np.random.rand(
batch_size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 2, 1))
self.assertDeviceChecks(dc, op, [X], [0])
if method not in ('MaxPool'):
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
method=st.sampled_from(["MaxPool", "AveragePool"]),
**hu.gcs_cpu_only)
def test_pooling_3d(self, stride, pad, kernel, size, input_channels,
batch_size, order, method, gc, dc):
assume(pad < kernel)
op = core.CreateOperator(
method,
["X"],
["Y"],
strides=[stride] * 3,
kernels=[kernel] * 3,
pads=[pad] * 6,
order=order,
engine="",
)
X = np.random.rand(
batch_size, size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 4, 1, 2, 3))
self.assertDeviceChecks(dc, op, [X], [0])
if method not in ('MaxPool'):
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(stride=st.integers(1, 3),
pad=st.integers(0, 3),
kernel=st.integers(1, 5),
size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
method=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]),
engine=st.sampled_from(["", "CUDNN"]),
**hu.gcs)
def test_pooling(self, stride, pad, kernel, size,
input_channels, batch_size,
order, method, engine, gc, dc):
assume(pad < kernel)
op = core.CreateOperator(
method,
["X"],
["Y"],
stride=stride,
kernel=kernel,
pad=pad,
order=order,
engine=engine,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if method not in ('MaxPool'):
self.assertGradientChecks(gc, op, [X], 0, [0])
@given(size=st.integers(7, 9),
input_channels=st.integers(1, 3),
batch_size=st.integers(1, 3),
order=st.sampled_from(["NCHW", "NHWC"]),
method=st.sampled_from(["MaxPool", "AveragePool", "LpPool"]),
engine=st.sampled_from(["", "CUDNN"]),
**hu.gcs)
def test_global_pooling(self, size, input_channels, batch_size,
order, method, engine, gc, dc):
op = core.CreateOperator(
method,
["X"],
["Y"],
order=order,
engine=engine,
global_pooling=True,
)
X = np.random.rand(
batch_size, size, size, input_channels).astype(np.float32)
if order == "NCHW":
X = X.transpose((0, 3, 1, 2))
self.assertDeviceChecks(dc, op, [X], [0])
if method not in ('MaxPool'):
self.assertGradientChecks(gc, op, [X], 0, [0])
if __name__ == "__main__":
import unittest
unittest.main()