pytorch/test/test_nestedtensor.py
Driss Guessous 092fe71f33 [Nested Tensor] detach (#84078)
## Summary
Add detach op for nested tensors. Nested tensors are not part of the composite explicit dispatch key set and therefore need to be added manually.

The Detach test is failing only for the dtype=torch.float32, torch.float16 and device=cuda. The chain of ops that called are sum.backward() -> from_padded() -> unbind(). This populates the grad for a and b.

Does this potentially indicated that cuda implementation for one of these ops, likely from_padded() is incorrect?
Pull Request resolved: https://github.com/pytorch/pytorch/pull/84078
Approved by: https://github.com/albanD
2022-08-27 03:00:55 +00:00

1573 lines
66 KiB
Python

# Owner(s): ["module: nestedtensor"]
import torch
import torch.nn
import unittest
from torch.testing._internal.common_device_type import (
dtypes,
dtypesIfCUDA,
instantiate_device_type_tests,
skipMeta,
onlyCPU
)
from torch.testing._internal.common_dtype import floating_types_and_half
from torch.testing._internal.common_utils import TestCase, IS_FBCODE, run_tests, freeze_rng_state, parametrize, gradcheck
from torch import nested_tensor
# Tests are ported from pytorch/nestedtensor.
# This makes porting as_nested_tensor easier in the future.
def _iter_constructors():
# yield as_nested_tensor
yield nested_tensor
# Helper function to generate a pair of random nested tensors
# one is contiguous, the other is not, but they appear to have same entries
# an output nested tensor consists of
# * `len(ragged_sizes)` matrices
# * matrices[i].shape == (20, ragged_sizes[i])
def random_nt_noncontiguous_pair(ragged_sizes, device="cpu", dtype=torch.float16):
xs = []
for size in ragged_sizes:
xs.append(torch.randn((size, 20), device=device, dtype=dtype))
# contiguous nested tensor
ys = []
for x in xs:
ys.append(x.transpose(-1, -2))
nt_contiguous = torch.nested_tensor(ys)
# noncontiguous nested tensor
n = len(ragged_sizes)
nt_noncontiguous = torch.nested_tensor(xs).transpose(-1, -2)
return nt_contiguous, nt_noncontiguous
# Helper functions to pad a noncontiguous nested tensor
# can be replaced once to_padded_tensor supports noncontiguous memory
def noncontiguous_to_padded_tensor(input, shape=None):
tensors = input.unbind()
ntensors = len(tensors)
assert ntensors > 0
if shape is None:
shape = []
for size in tensors[0].shape:
shape.append(size)
for i in range(1, ntensors):
new_shape = tensors[i].shape
for j in range(len(shape)):
shape[j] = max(shape[j], new_shape[j])
shape = [ntensors] + shape
result = tensors[0].new_zeros(shape)
for itensor in range(ntensors):
tensor = tensors[itensor]
view = result[itensor]
for idim in range(tensor.dim()):
view = view.narrow(idim, 0, tensor.size(idim))
view.copy_(tensor)
return result
class TestNestedTensor(TestCase):
@torch.inference_mode()
def _test_unbind_case(self, a, b):
nt = nested_tensor([a, b])
a1, b1 = nt.unbind()
self.assertTrue(a is not a1)
self.assertTrue(b is not b1)
nt = nested_tensor([a, b], dtype=a.dtype)
a1, b1 = nt.unbind(0)
self.assertEqual(a, a1)
self.assertEqual(b, b1)
a = torch.randn((2, 3)).add_(1)
nt = nested_tensor([a])
self.assertEqual(a, nt.unbind(0)[0])
@torch.inference_mode()
def test_unbind_0(self):
self._test_unbind_case(
torch.tensor([1, 2]), torch.tensor([7, 8]),
)
@torch.inference_mode()
def test_unbind_1(self):
self._test_unbind_case(
torch.tensor([1]), torch.tensor([7]),
)
@torch.inference_mode()
def test_unbind_3(self):
self._test_unbind_case(
torch.tensor([1.0]), torch.tensor([]),
)
@torch.inference_mode()
def test_unbind_4(self):
self._test_unbind_case(
torch.tensor([]), torch.tensor([]),
)
@torch.inference_mode()
def test_unbind_dim(self):
def _test_fn(unbind_fn):
a = torch.rand(3, 2)
b = torch.rand(2, 3)
nt = nested_tensor([a, b])
self.assertRaises(RuntimeError, lambda: unbind_fn(nt, 1))
# Both of these tests are necessary, because we're using
# torch_function.
_test_fn(lambda x, dim: x.unbind(dim))
# TODO: Re-enable this once using torch_dispatch
# _test_fn(lambda x, dim: torch.unbind(x, dim))
@torch.inference_mode()
def test_nested_tensor(self):
self.assertRaises(TypeError, lambda: nested_tensor([3.0]))
self.assertRaises(TypeError, lambda: nested_tensor(torch.tensor([3.0])))
self.assertRaises(TypeError, lambda: nested_tensor(4.0))
@torch.inference_mode()
def test_nested_tensor_matching_dim(self):
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 1 and dimension 0 for Tensor at index 0.",
lambda: nested_tensor([torch.tensor(1.0), torch.tensor([])]),
)
self.assertRaisesRegex(
RuntimeError,
"Found dimension 1 for Tensor at index 2 and dimension 0 for Tensor at index 1.",
lambda: nested_tensor(
[torch.tensor(1.0), torch.tensor(2.0), torch.tensor([])]
),
)
@torch.inference_mode()
def test_default_nested_tensor(self):
self.assertRaises(TypeError, lambda: nested_tensor())
default_nested_tensor = nested_tensor([])
default_tensor = torch.tensor([])
# self.assertEqual(default_nested_tensor.nested_dim(), 1)
# self.assertEqual(default_nested_tensor.nested_size(), ())
self.assertEqual(default_nested_tensor.dim(), default_tensor.dim())
self.assertEqual(default_nested_tensor.layout, default_tensor.layout)
self.assertEqual(default_nested_tensor.device, default_tensor.device)
self.assertEqual(default_nested_tensor.dtype, default_tensor.dtype)
self.assertEqual(
default_nested_tensor.requires_grad, default_tensor.requires_grad
)
self.assertIsNone(default_tensor.grad)
# TODO: Re-enable once we have a performance driven
# use case and implementation.
# self.assertEqual(default_nested_tensor.is_pinned(),
# default_tensor.is_pinned())
@torch.inference_mode()
def test_dim(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor(3.0)])
self.assertEqual(a1.dim(), 1)
a1 = constructor([torch.tensor([1, 2, 3, 4])])
self.assertEqual(a1.dim(), 2)
@unittest.skipIf(IS_FBCODE, "numel is not virtual in fbcode.")
@torch.inference_mode()
def test_numel(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertEqual(a1.numel(), 0)
a1 = constructor([torch.tensor(3.0), torch.tensor(4.0)])
self.assertEqual(a1.numel(), 2)
a1 = constructor([torch.randn(2, 2, 2)])
self.assertEqual(a1.numel(), 8)
a1 = constructor([torch.randn([1, 2, 3]), torch.randn(3, 2, 1)])
self.assertEqual(a1.numel(), 12)
a1 = constructor([torch.randn([1, 1, 3]), torch.randn(3, 2, 4)])
self.assertEqual(a1.numel(), 27)
a1 = constructor([torch.randn([5, 5, 5]), torch.randn(6, 6, 6)])
self.assertEqual(a1.numel(), 341)
# Interesting edge case
a1 = constructor([torch.randn([1, 2, 3]), torch.randn(1, 2, 0)])
self.assertEqual(a1.numel(), 6)
@torch.inference_mode()
def test_size(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"Tensors of type NestedTensorImpl do not have sym sizes"
if IS_FBCODE
else "NestedTensorImpl doesn't support sizes",
lambda: a1.size(),
)
@unittest.skipIf(IS_FBCODE, "stride is not virtual in fbcode.")
@torch.inference_mode()
def test_stride(self):
for constructor in _iter_constructors():
a1 = constructor([])
self.assertRaisesRegex(
RuntimeError,
"NestedTensorImpl doesn't support strides",
lambda: a1.stride(),
)
@unittest.skipIf(IS_FBCODE, "is_contiguous is not virtual in fbcode.")
@torch.inference_mode()
def test_is_contiguous(self):
# Test empty case
nt_empty = torch.nested_tensor([])
assert nt_empty.is_contiguous()
self.assertEqual(nt_empty, nt_empty.contiguous())
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7))
# Test contiguous case
assert nt_contiguous.is_contiguous()
self.assertEqual(nt_contiguous, nt_contiguous.contiguous())
# Test non_contiguous case
assert not nt_noncontiguous.is_contiguous()
self.assertRaisesRegex(
RuntimeError,
r"clone_nested only supports memory format Preserve, but got Contiguous instead.",
lambda: nt_noncontiguous.contiguous()
)
@torch.inference_mode()
def test_repr_string(self):
a = nested_tensor([])
expected = "nested_tensor([" "\n\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = nested_tensor([torch.tensor(1.0)])
expected = "nested_tensor([" "\n tensor(1.)" "\n])"
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
a = nested_tensor([torch.tensor([[1, 2]]), torch.tensor([[4, 5]])])
expected = (
"nested_tensor([" "\n tensor([[1, 2]])" "," "\n tensor([[4, 5]])" "\n])"
)
self.assertEqual(str(a), expected)
self.assertEqual(repr(a), expected)
@torch.inference_mode()
def test_activations(self):
for func in (torch.nn.functional.relu, torch.nn.functional.relu_, torch.nn.functional.gelu, torch._C._nn.gelu_):
t = torch.tensor([-1, 0, 1], dtype=torch.float)
nt = nested_tensor([t])
nested_result = func(nt)
self.assertTrue(nested_result.is_nested)
self.assertEqual(func(t), nested_result.unbind()[0])
def test_to_padded_tensor_on_empty_tensor(self):
nt = torch.nested_tensor([])
empty = nt.to_padded_tensor(4)
self.assertEqual(empty, torch.tensor([]))
class TestNestedTensorDeviceType(TestCase):
# Helper function to generate a random nested tensor
def random_nt(self, device, dtype, num_tensors, max_dims, min_dims=None):
if min_dims is None:
min_dims = tuple([0] * len(max_dims))
ts1 = []
for _ in range(num_tensors):
tensor_dims = tuple([torch.randint(low=min_dim, high=max_dim, size=(1,)).item()
for (min_dim, max_dim) in zip(min_dims, max_dims)])
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
ts1.append(t1)
return torch.nested_tensor(ts1, device=device, dtype=dtype)
# Helper function to generate a pair of random nested tensors
# the 2 nested tensors have same shapes
def random_nt_pair(self, device, dtype, num_tensors, max_dims):
ts1 = []
ts2 = []
for _ in range(num_tensors):
tensor_dims = tuple([torch.randint(low=0, high=max_dim, size=(1,)).item() for max_dim in max_dims])
t1 = torch.randn(tensor_dims, device=device, dtype=dtype)
t2 = torch.randn(tensor_dims, device=device, dtype=dtype)
ts1.append(t1)
ts2.append(t2)
return (torch.nested_tensor(ts1, device=device, dtype=dtype),
torch.nested_tensor(ts2, device=device, dtype=dtype))
@dtypes(*floating_types_and_half())
@dtypesIfCUDA(torch.float64)
def test_detach(self, device, dtype):
a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=False)
b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=False)
x = torch.nested_tensor([a, b]).requires_grad_()
x_detach = x.detach()
z = x_detach * 4
self.assertFalse(x_detach.requires_grad)
self.assertFalse(z.requires_grad)
a = torch.randn(2, 4, device=device, dtype=dtype, requires_grad=True)
b = torch.randn(5, 4, device=device, dtype=dtype, requires_grad=True)
x = torch.nested_tensor([a, b])
y = x * 2
y = y.detach()
self.assertFalse(y.requires_grad)
self.assertIsNone(y.grad_fn)
z = x + y
z.to_padded_tensor(0).sum().backward()
# This is an incorrect gradient, but we assume that's what the user
# wanted. detach() is an advanced option.
self.assertEqual(a.grad, torch.ones(2, 4, device=device, dtype=dtype))
self.assertEqual(b.grad, torch.ones(5, 4, device=device, dtype=dtype))
@dtypes(torch.float, torch.float16, torch.double)
def test_unbind_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
ub_contiguous = nt_contiguous.unbind()
ub_noncontiguous = nt_noncontiguous.unbind()
self.assertEqual(len(ub_contiguous), len(ub_noncontiguous))
n = len(ub_contiguous)
for i in range(n):
self.assertEqual(ub_contiguous[i], ub_noncontiguous[i])
@dtypes(torch.float)
@skipMeta
def test_to_then_from_padded_tensor_no_transform0213(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
padded = nt.to_padded_tensor(0)
nt_to = torch._nested_from_padded_and_nested_example(padded, nt)
for (t1, t2) in zip(nt.unbind(), nt_to.unbind()):
self.assertEqual(t1, t2)
self.assertEqual(nt.device, nt_to.device)
@dtypes(torch.float)
@dtypesIfCUDA(torch.float, torch.half)
@skipMeta
@torch.inference_mode()
def test_layer_norm(self, device, dtype):
def _test(size):
t0 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
t1 = torch.randn(2, size, device=device, dtype=dtype, requires_grad=False)
ts = [t0, t1, t0, t1]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
layer_norm = torch.nn.LayerNorm(size, device=device, dtype=dtype)
nt_result = nt._nested_tensor_layer_norm(
layer_norm.weight, layer_norm.bias, 1e-5
)
for (nt_subresult, t) in zip(nt_result.unbind(), ts):
t_result = layer_norm(t.reshape(1, -1, size).squeeze(0))
self.assertEqual(nt_subresult, t_result)
for size in (1024, 1023, 513, 512, 256, 128, 2, 4, 32):
_test(size)
@skipMeta
@torch.inference_mode()
def test_embedding(self, device):
inputs = [
torch.randint(100, (L,), device=device, dtype=torch.int64)
for L in torch.randint(5, 50, (8,))
]
x = torch.nested_tensor(inputs, device=device, dtype=torch.int64)
emb = torch.nn.Embedding(100, 8, device=device)
y = emb(x)
ys = y.unbind()
for i, inp in enumerate(inputs):
self.assertEqual(emb(inp), ys[i])
@dtypes(torch.float, torch.float16)
def test_to_padded_tensor_simple(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
for padding_value in (0, 1):
padded = nt.to_padded_tensor(padding_value)
correct_output = t.clone()
if padding_value == 0:
correct_output[0][-1] = torch.zeros_like(correct_output[0][-1])
else:
correct_output[0][-1] = torch.ones_like(correct_output[0][-1])
self.assertEqual(padded, correct_output)
self.assertEqual(padded.device, torch.device(device))
self.assertEqual(padded.dtype, dtype)
@dtypes(torch.float, torch.float16)
def test_to_padded_tensor_output_size(self, device, dtype):
t = torch.randn(4, 4, 4, device=device, dtype=dtype)
output_size = (4, 6, 5)
ts = list(torch.unbind(t))
ts[0] = ts[0][:-1]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
for padding_value in (0, 1):
padded = nt.to_padded_tensor(padding_value, output_size=output_size)
correct_output = torch.ones(output_size, device=device, dtype=dtype) * padding_value
correct_output[:4:, :4, :4] = t.clone()
if padding_value == 0:
correct_output[0][3] = torch.zeros_like(correct_output[0][3])
else:
correct_output[0][3] = torch.ones_like(correct_output[0][3])
self.assertEqual(padded, correct_output)
self.assertEqual(padded.device, torch.device(device))
self.assertEqual(padded.dtype, dtype)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim2(self, device, dtype):
ts = [
torch.randn(160, device=device, dtype=dtype),
torch.randn(1240, device=device, dtype=dtype),
torch.randn(2400, device=device, dtype=dtype),
]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0)].copy_(t)
correct_output = torch.stack(correct_output)
padded = nt.to_padded_tensor(pad)
self.assertEqual(padded, correct_output)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim3(self, device, dtype):
ts = [
torch.randn(16, 21, device=device, dtype=dtype),
torch.randn(24, 32, device=device, dtype=dtype),
torch.randn(40, 53, device=device, dtype=dtype),
]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0), :t.size(1)].copy_(t)
correct_output = torch.stack(correct_output)
padded = nt.to_padded_tensor(pad)
self.assertEqual(padded, correct_output)
@dtypes(torch.float, torch.float16, torch.double)
def test_to_padded_tensor_dim4(self, device, dtype):
ts = [
torch.randn(16, 21, 13, device=device, dtype=dtype),
torch.randn(24, 32, 14, device=device, dtype=dtype),
torch.randn(40, 53, 16, device=device, dtype=dtype),
]
nt = torch.nested_tensor(ts, device=device, dtype=dtype)
pad = 42
correct_output = []
for t in ts:
next_output = torch.ones_like(ts[2]) * pad
correct_output.append(next_output)
next_output[:t.size(0), :t.size(1), :t.size(2)].copy_(t)
correct_output = torch.stack(correct_output)
padded = nt.to_padded_tensor(pad)
self.assertEqual(padded, correct_output)
# TODO: test noncontiguous to_padded_tensor
# For now this tests the functionality of noncontiguous_to_padded_tensor
# and the error message of to_padded_tensor
# since to_padded_tensor does not support noncontiguous buffer yet
@dtypes(torch.float, torch.float16, torch.double)
@torch.inference_mode()
def test_to_padded_tensor_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
# test noncontiguous_to_padded_tensor functionality
self.assertEqual(
nt_contiguous.to_padded_tensor(0.0),
noncontiguous_to_padded_tensor(nt_noncontiguous))
# test to_padded_tensor error message
self.assertRaisesRegex(
RuntimeError,
r"for now to_padded_tensor only supports contiguous nested tensor",
lambda: nt_noncontiguous.to_padded_tensor(0.0)
)
@skipMeta
def test_device_checks(self, device):
nt = torch.nested_tensor([], device=device)
is_cuda = 'cuda' in str(device)
self.assertEqual(nt.is_cuda, is_cuda)
@dtypes(torch.float, torch.float16, torch.double)
def test_nested_tensor_indexing(self, device, dtype):
# edge case: empty nested tensor
nt0 = torch.nested_tensor([])
self.assertRaises(IndexError, lambda: nt0[0])
# normal case
x0 = torch.randn((2, 5), device=device, dtype=dtype)
x1 = torch.randn((3, 4), device=device, dtype=dtype)
nt = torch.nested_tensor([x0, x1])
# single index: only support integer in the batch dimension
self.assertEqual(nt[0], x0)
self.assertEqual(nt[-1], x1)
self.assertRaises(IndexError, lambda: nt[2])
self.assertRaises(IndexError, lambda: nt[-3])
self.assertRaises(NotImplementedError, lambda: nt[:])
self.assertRaises(NotImplementedError, lambda: nt[None])
self.assertRaises(NotImplementedError, lambda: nt[...])
# tuple of indices: only support integer in the batch dimension
# + all possible indexing in the original tensor dimensions
self.assertEqual(nt[0, 0, 0], x0[0, 0])
self.assertEqual(nt[0, 1, :], x0[1, :])
self.assertEqual(nt[1, ...], x1)
self.assertRaises(IndexError, lambda: nt[1, 4, 2])
self.assertRaises(NotImplementedError, lambda: nt[:, 1, 1])
# make sure indexing returns a view
nt[0].fill_(100.0)
answer = torch.tensor(100.0, device=device, dtype=dtype).expand((2, 5))
self.assertEqual(nt[0], answer)
nt[1, 1, :].fill_(200.0)
answer = torch.tensor(200.0, device=device, dtype=dtype).expand(4)
self.assertEqual(nt[1, 1, :], answer)
@dtypes(torch.float, torch.float16, torch.double)
@torch.inference_mode()
def test_nested_tensor_indexing_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
self.assertEqual(nt_contiguous.size(0), nt_noncontiguous.size(0))
n = nt_contiguous.size(0)
for i in range(n):
self.assertEqual(nt_contiguous[i], nt_noncontiguous[i])
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_add(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
out = nt1 + nt2
self.assertEqual(ref, out)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_mul(self, device, dtype):
# nested tensor * nested tensor
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
out = nt1 * nt2
self.assertEqual(ref, out)
# nested tensor * scalar
number = 10.0
scalar = torch.tensor(number).to(dtype).to(device)
ref = torch.nested_tensor([t * number for t in nt1.unbind()])
out_number0 = nt1 * number
out_number1 = number * nt1
out_scalar0 = nt1 * scalar
out_scalar1 = scalar * nt1
self.assertEqual(out_number0, ref)
self.assertEqual(out_number1, ref)
self.assertEqual(out_scalar0, ref)
self.assertEqual(out_scalar1, ref)
# error case: numel == 1 but dim > 0
vector = torch.tensor([number]).to(dtype).to(device)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a nested self and non-nested other",
lambda: nt1.mul(vector)
)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a non-nested self and nested other",
lambda: vector.mul(nt1)
)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_add_in_place(self, device, dtype):
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested_tensor([t1 + t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
nt1 += nt2
self.assertEqual(ref, nt1)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_nested_tensor_mul_in_place(self, device, dtype):
# nested tensor * nested tensor
(nt1, nt2) = self.random_nt_pair(device, dtype, 4, (4, 4))
ref = torch.nested_tensor([t1 * t2 for (t1, t2) in zip(nt1.unbind(), nt2.unbind())])
nt1 *= nt2
self.assertEqual(ref, nt1)
# nested tensor * scalar
number = 10.0
scalar = torch.tensor(number).to(dtype).to(device)
ref = torch.nested_tensor([t * number for t in nt1.unbind()])
out_number = nt1.clone()
out_number *= number
out_scalar = nt1.clone()
out_scalar *= scalar
self.assertEqual(out_number, ref)
self.assertEqual(out_scalar, ref)
self.assertRaisesRegex(
RuntimeError,
r"output with shape \[.*\] doesn't match the broadcast shape \[.*\]",
lambda: scalar.mul_(nt1)
)
# error case: numel == 1 but dim > 0
vector = torch.tensor([number]).to(dtype).to(device)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a nested self and non-nested other",
lambda: nt1.mul_(vector)
)
self.assertRaisesRegex(
RuntimeError,
"Expected both self and other to be nested, but got a non-nested self and nested other",
lambda: vector.mul_(nt1)
)
@onlyCPU
@skipMeta
@dtypes(torch.float)
def test_nested_tensor_sum_dim(self, device, dtype):
params = ((2, (1, 1)), ((4), (4, 4)), (10, (3, 5, 7)))
def test_sum(device, dtype, ntensors, max_sizes, dim, keepdim=True):
nt = self.random_nt(device, dtype, ntensors, max_sizes)
nt2 = nt.clone()
ub2 = nt2.unbind()
nt.requires_grad_(True)
[t.requires_grad_(True) for t in ub2]
nt_sum = nt.sum(dim=dim, keepdim=keepdim)
ub2_sum = [t.sum(-1, keepdim=keepdim) for t in ub2]
self.assertEqual(nt_sum, torch.nested_tensor(ub2_sum))
# test backward
# generate gradient tensor that has the same size as the output
size = nt_sum._nested_tensor_size()
gt2 = []
for i in range(ntensors):
gt2.append(torch.randn(size[i].tolist(), device=device, dtype=dtype))
gt = torch.nested_tensor(gt2).clone()
nt_sum.backward(gt)
for t2, g2 in zip(ub2_sum, gt2):
t2.backward(g2)
self.assertEqual(nt.grad, torch.nested_tensor([t.grad for t in ub2]))
return
for ntensors, max_sizes in params:
test_sum(device, dtype, ntensors, max_sizes, len(max_sizes))
# Test error inputs
with self.assertRaisesRegex(RuntimeError, "NestedTensor can only be reduced across the last"):
torch.nested_tensor([torch.tensor([3, 4, 5]), torch.tensor([1, 2])]).sum(0, keepdim=True)
with self.assertRaisesRegex(RuntimeError, "NestedTensor only allows reduction of a single"):
torch.nested_tensor([torch.tensor([[3, 4, 5]]), torch.tensor([[1, 2]])]).sum([0, 1], keepdim=True)
with self.assertRaisesRegex(RuntimeError, "NestedTensor always requires keepdim=True for now."):
torch.nested_tensor([torch.tensor([3, 4, 5]), torch.tensor([1, 2])]).sum(-1)
@dtypes(torch.float, torch.float16)
@skipMeta
@torch.inference_mode()
def test_clone(self, device, dtype):
nt1 = self.random_nt(device, dtype, 4, (4, 4), (1, 1))
nt2 = nt1.clone()
# Verify the values match
self.assertEqual(nt1, nt2)
# Verify modifying nt2 doesn't affect nt1
nt2.mul_(nt1)
ub1 = nt1.unbind()
ub2 = nt2.unbind()
for i in range(len(ub1)):
self.assertNotEqual(ub1[i], ub2[i])
nt1.clone(memory_format=torch.preserve_format)
msg = "clone_nested only supports memory format Preserve, but got ChannelsLast instead."
with self.assertRaisesRegex(RuntimeError, msg):
nt1.clone(memory_format=torch.channels_last)
# cannot test torch.float16 because: RuntimeError: "bernoulli_scalar_cpu_" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_dropout(self, device, dtype):
# edge case: empty nested tensor
nt0 = torch.nested_tensor([])
y = torch.nn.functional.dropout(nt0, 0.5)
self.assertEqual(nt0, y)
# normal nested tensor
ntensors = 4
nt = self.random_nt(device, dtype, ntensors, (4, 4))
# edge case: invalid dropout
self.assertRaises(ValueError, lambda: torch.nn.Dropout(-0.1))
self.assertRaises(ValueError, lambda: torch.nn.Dropout(1.1))
self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, -0.1))
self.assertRaises(ValueError, lambda: torch.nn.functional.dropout(nt, 1.1))
# edge case: no dropout
dropouter = torch.nn.Dropout(0.0)
y0 = dropouter(nt)
y1 = torch.nn.functional.dropout(nt, 0.0)
self.assertEqual(nt, y0)
self.assertEqual(nt, y1)
# edge case: all dropout
dropouter = torch.nn.Dropout(1.0)
y0 = dropouter(nt)
y1 = torch.nn.functional.dropout(nt, 1.0)
nt0 = nt.clone()
for i in range(ntensors):
nt0[i].fill_(0.0)
self.assertEqual(nt0, y0)
self.assertEqual(nt0, y1)
# normal case: normal dropout
p = 0.2
y = torch.nn.functional.dropout(nt, p)
expect = nt.clone()
for i in range(ntensors):
actual_tensor = y[i].view(-1)
expect_tensor = expect[i].view(-1)
for j in range(actual_tensor.shape[0]):
if actual_tensor[j].item() == 0.0:
expect_tensor[j] = 0.0
else:
expect_tensor[j] /= 1.0 - p
self.assertEqual(y, expect)
with freeze_rng_state():
dropouter = torch.nn.Dropout(p)
y0 = dropouter(nt)
with freeze_rng_state():
y1 = torch.nn.functional.dropout(nt, p)
self.assertEqual(y0, y1)
@dtypes(torch.float, torch.double)
def test_dropout_noncontiguous(self, device, dtype):
ntensors = 4
nt0 = self.random_nt(device, dtype, ntensors, (4, 4))
nt1 = nt0.transpose(-1, -2)
p = 0.3
with freeze_rng_state():
dropouter = torch.nn.Dropout(p)
y0 = dropouter(nt0)
with freeze_rng_state():
y1 = torch.nn.functional.dropout(nt1, p).transpose(-1, -2)
self.assertEqual(y0, y1)
# cannot test torch.float16 because: RuntimeError: "softmax_kernel_impl" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_softmax(self, device, dtype):
# normal nested tensor
ntensors = 4
nt = self.random_nt(device, dtype, ntensors, (4, 4))
# error case: softmax across nested dimension
self.assertRaisesRegex(
RuntimeError,
"Cannot apply softmax across nested dimension 0",
lambda: torch.nn.functional.softmax(nt, 0)
)
self.assertRaisesRegex(
RuntimeError,
"Cannot apply softmax across nested dimension 0",
lambda: torch.nn.functional.softmax(nt, -3)
)
# error case: dimension out of range
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, 3))
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt, -4))
# normal case: should equal to padding -inf
softmaxer = torch.nn.Softmax(1)
y0 = softmaxer(nt)
y1 = torch.nn.functional.softmax(nt, 1)
self.assertEqual(y0, y1)
pt = nt.to_padded_tensor(float("-inf"))
# if an entire slice is padded, then softmax will return 0.0 / 0.0 = nan
# however, physically speaking that should be 0.0
expect = torch.nn.functional.softmax(pt, 1).nan_to_num_(0.0)
self.assertEqual(y0.to_padded_tensor(0.0), expect)
# edge case: empty nested tensor
nt0 = torch.nested_tensor([])
y = torch.nn.functional.softmax(nt0, 1)
self.assertEqual(nt0, y)
# edge case: nesting scalars
nt1 = torch.nested_tensor([torch.tensor(0.0), torch.tensor(1.0)])
self.assertRaises(RuntimeError, lambda: torch.nn.functional.softmax(nt1, 0))
self.assertRaises(IndexError, lambda: torch.nn.functional.softmax(nt1, 1))
@dtypes(torch.float, torch.double)
@torch.inference_mode()
def test_softmax_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
self.assertEqual(
torch.nn.functional.softmax(nt_contiguous, -1),
torch.nn.functional.softmax(nt_noncontiguous, -1))
# cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_bmm(self, device, dtype):
# error case: one is nested but the other is not
nt = torch.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype)
t = torch.randn(4, device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"Expected both to be nested, but got a nested self and non-nested other",
lambda: nt.bmm(t)
)
self.assertRaisesRegex(
RuntimeError,
"Expected both to be nested, but got a non-nested self and nested other",
lambda: t.bmm(nt)
)
# error case: not 3D tensors
nt0 = torch.nested_tensor([], device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype)
nt2 = torch.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"batch1 must be a 3D tensor",
lambda: nt0.bmm(nt0)
)
self.assertRaisesRegex(
RuntimeError,
"batch1 must be a 3D tensor",
lambda: nt0.bmm(nt1)
)
self.assertRaisesRegex(
RuntimeError,
"batch1 must be a 3D tensor",
lambda: nt0.bmm(nt2)
)
self.assertRaisesRegex(
RuntimeError,
"batch1 must be a 3D tensor",
lambda: nt1.bmm(nt0)
)
self.assertRaisesRegex(
RuntimeError,
"batch1 must be a 3D tensor",
lambda: nt1.bmm(nt1)
)
self.assertRaisesRegex(
RuntimeError,
"batch1 must be a 3D tensor",
lambda: nt1.bmm(nt2)
)
self.assertRaisesRegex(
RuntimeError,
"batch2 must be a 3D tensor",
lambda: nt2.bmm(nt0)
)
self.assertRaisesRegex(
RuntimeError,
"batch2 must be a 3D tensor",
lambda: nt2.bmm(nt1)
)
# error case: incompatible batch size
nt0 = torch.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn((4, 6)),
torch.randn((4, 5)),
torch.randn((4, 7))],
device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"Expected size for the 1st dimension of batch2 tensor to be: 2 but got: 3.",
lambda: nt0.bmm(nt1)
)
self.assertRaisesRegex(
RuntimeError,
"Expected size for the 1st dimension of batch2 tensor to be: 3 but got: 2.",
lambda: nt1.bmm(nt0)
)
# error case: underlying matrices cannot be multiplied
nt0 = torch.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
r"0-th nested matrices in batch cannot be multiplied \(2x4 and 2x4\)",
lambda: nt0.bmm(nt0)
)
# normal nested tensor
nt0 = torch.nested_tensor([torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype)
actual = nt0.bmm(nt1).to_padded_tensor(0.0)
expect = nt0.to_padded_tensor(0.0).bmm(nt1.to_padded_tensor(0.0))
self.assertEqual(actual, expect)
# cannot test torch.float16 because: RuntimeError: "addmm_impl_cpu_" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_bmm_noncontiguous(self, device, dtype):
nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair((6, 7), device, dtype)
self.assertEqual(
nt0_contiguous.transpose(-1, -2).bmm(nt1_contiguous),
nt0_noncontiguous.transpose(-1, -2).bmm(nt1_noncontiguous))
# cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_matmul(self, device, dtype):
# error case: one is nested but the other is not
nt = torch.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype)
t = torch.randn(4, device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
"Expected both to be nested, but got a nested self and non-nested other",
lambda: torch.matmul(nt, t)
)
self.assertRaisesRegex(
RuntimeError,
"Expected both to be nested, but got a non-nested self and nested other",
lambda: torch.matmul(t, nt)
)
# error case: not 3+D tensors
nt0 = torch.nested_tensor([], device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn(2), torch.randn(3)], device=device, dtype=dtype)
nt2 = torch.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt0, nt0)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt0, nt1)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt0, nt2)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt1, nt0)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt1, nt1)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 1st input has rank: [0-9]+",
lambda: torch.matmul(nt1, nt2)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+",
lambda: torch.matmul(nt2, nt0)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, only inputs with >= 3 dims are currently supported. 2nd input has rank: [0-9]+",
lambda: torch.matmul(nt2, nt1)
)
# error case: incompatible batch size
nt0 = torch.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn((4, 6)),
torch.randn((4, 5)),
torch.randn((4, 7))],
device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.",
lambda: torch.matmul(nt0, nt1)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: Expected size for the 1st dimension of 2nd input tensor to be: [0-9]+ but got: [0-9]+.",
lambda: torch.matmul(nt1, nt0)
)
# error case: incompatible generalized batch size
nt0 = torch.nested_tensor([torch.randn((2, 2, 4)),
torch.randn((2, 3, 4))],
device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn((3, 4, 6)),
torch.randn((3, 4, 5))],
device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, no broadcasting is currently performed: "
r"[0-9]+-th nested matrices in batch at dimension [0-9]+ "
r"have mismatching sizes [0-9]+ and [0-9]+",
lambda: torch.matmul(nt0, nt1)
)
self.assertRaisesRegex(
RuntimeError,
r"matmul: For nested tensors, no broadcasting is currently performed: "
r"[0-9]+-th nested matrices in batch at dimension [0-9]+ "
r"have mismatching sizes [0-9]+ and [0-9]+",
lambda: torch.matmul(nt1, nt0)
)
# error case: underlying matrices cannot be multiplied
nt0 = torch.nested_tensor([torch.randn((2, 4)), torch.randn((3, 4))], device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
r"0-th nested matrices in batch cannot be multiplied \(2x4 and 2x4\)",
lambda: torch.matmul(nt0, nt0)
)
# normal nested tensor: 3D
nt0 = torch.nested_tensor([torch.randn((2, 4)), torch.randn((3, 7))], device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn((4, 6)), torch.randn((7, 5))], device=device, dtype=dtype)
actual = torch.matmul(nt0, nt1).to_padded_tensor(0.0)
expect = torch.matmul(nt0.to_padded_tensor(0.0), nt1.to_padded_tensor(0.0))
self.assertEqual(actual, expect)
# normal nested tensor: 4D
nt0 = torch.nested_tensor([torch.randn((8, 2, 4)),
torch.randn((8, 3, 7))],
device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn((8, 4, 6)),
torch.randn((8, 7, 5))],
device=device, dtype=dtype)
actual = torch.matmul(nt0, nt1).to_padded_tensor(0.0)
expect = torch.matmul(nt0.to_padded_tensor(0.0), nt1.to_padded_tensor(0.0))
self.assertEqual(actual, expect)
# normal nested tensor: 5D
nt0 = torch.nested_tensor([torch.randn((8, 9, 2, 4)),
torch.randn((8, 9, 3, 7))],
device=device, dtype=dtype)
nt1 = torch.nested_tensor([torch.randn((8, 9, 4, 6)),
torch.randn((8, 9, 7, 5))],
device=device, dtype=dtype)
actual = torch.matmul(nt0, nt1).to_padded_tensor(0.0)
expect = torch.matmul(nt0.to_padded_tensor(0.0), nt1.to_padded_tensor(0.0))
self.assertEqual(actual, expect)
# cannot test torch.float16 because: RuntimeError: "bmm" not implemented for 'Half'
@dtypes(torch.float, torch.double)
def test_matmul_noncontiguous(self, device, dtype):
nt0_contiguous, nt0_noncontiguous = random_nt_noncontiguous_pair((2, 3), device, dtype)
nt1_contiguous, nt1_noncontiguous = random_nt_noncontiguous_pair((6, 7), device, dtype)
self.assertEqual(
torch.matmul(nt0_contiguous.transpose(-1, -2), nt1_contiguous),
torch.matmul(nt0_noncontiguous.transpose(-1, -2), nt1_noncontiguous))
@dtypes(torch.float, torch.double)
def test_linear(self, device, dtype):
a = torch.randn(1, 2, device=device, dtype=dtype)
b = torch.randn(2, 2, device=device, dtype=dtype)
c = torch.randn(3, 2, device=device, dtype=dtype)
nt = torch.nested_tensor([a, b, c])
weight = torch.randn(2, 2, device=device, dtype=dtype)
bias = torch.randn(2, device=device, dtype=dtype)
# success case
torch.functional.F.linear(nt, weight, bias)
# invalid nested tensor dimension
msg = r'Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 2. Dense tensor dim: 2'
nt1 = torch.nested_tensor([torch.randn(1, device=device, dtype=dtype),
torch.randn(2, device=device, dtype=dtype)])
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt1, weight, bias)
# invalid weight shape
msg = r'Linear requires nested_tensor.dim == 3 and dense_matrix.dim == 2. Nested tensor dim: 3. Dense tensor dim: 3'
weight1 = torch.randn(2, 2, 3, device=device, dtype=dtype)
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt, weight1, bias)
# inconsistent last dim of nested tensor
msg = r"all tensors in NestedTensor must have the same trailing dim"
nt2 = torch.nested_tensor([torch.randn(1, 2, device=device, dtype=dtype),
torch.randn(2, 3, device=device, dtype=dtype)])
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt2, weight, bias)
# Mismatch of nested tensor last dim and weight dimension
weight2 = torch.randn(2, 4, device=device, dtype=dtype)
msg = r"Shape mismatch for NestedTensor Linear: Expected input's \(a nested tensor\) 'last_dim'" \
r" to equal 'weight.size\(1\), but got: last_dim = 2, and weight.size\(1\) = 4"
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt, weight2, bias)
# Nested tensor input and nested weight
nt_weight = nt.clone()
msg = r"Linear does not support nested weight when input is a nested tensor."
with self.assertRaisesRegex(RuntimeError, msg):
torch.functional.F.linear(nt, nt_weight, bias)
# TODO: test noncontiguous linear
# For now this tests the error message of linear
# since linear does not support noncontiguous buffer yet
@dtypes(torch.float, torch.double)
def test_linear_noncontiguous(self, device, dtype):
nt_contiguous, nt_noncontiguous = random_nt_noncontiguous_pair((2, 3, 6, 7), device, dtype)
weight = torch.randn((8, 5), device=device, dtype=dtype)
self.assertRaisesRegex(
RuntimeError,
r"for now linear only supports contiguous nested tensor",
lambda: torch.nn.functional.linear(nt_noncontiguous, weight)
)
@dtypes(torch.float, torch.float16, torch.double)
@torch.inference_mode()
def test_transpose(self, device, dtype):
nt = self.random_nt(device, dtype, 4, (4, 4))
# error case: transpose nested dimension
self.assertRaisesRegex(
RuntimeError,
"Nested tensor dimension 0 cannot be transposed",
lambda: nt.transpose(0, 1)
)
self.assertRaisesRegex(
RuntimeError,
"Nested tensor dimension 0 cannot be transposed",
lambda: nt.transpose(1, -3)
)
# error case: dimension out of range
self.assertRaises(IndexError, lambda: nt.transpose(1, 3))
self.assertRaises(IndexError, lambda: nt.transpose(-4, -1))
# normal case
ntT = nt.transpose(-1, -2)
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
pt = nt.to_padded_tensor(0.0)
ptT = pt.transpose(-1, -2)
self.assertEqual(ptT, ptT_from_ntT)
@dtypes(torch.float, torch.float16, torch.double)
def test_transpose_inference_mode_interaction(self, device, dtype):
nt = self.random_nt(device, dtype, 4, (4, 4))
# Construct in default mode and transpose while in inference mode
with torch.inference_mode():
ntT = nt.transpose(-1, -2)
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
pt = nt.to_padded_tensor(0.0)
ptT = pt.transpose(-1, -2)
self.assertEqual(ptT, ptT_from_ntT)
# Construct and transpose while in inference mode
with torch.inference_mode():
nt = self.random_nt(device, dtype, 4, (4, 4))
ntT = nt.transpose(-1, -2)
ptT_from_ntT = noncontiguous_to_padded_tensor(ntT)
pt = nt.to_padded_tensor(0.0)
ptT = pt.transpose(-1, -2)
self.assertEqual(ptT, ptT_from_ntT)
@dtypes(torch.float, torch.float16, torch.double)
@torch.inference_mode()
def test_reshape(self, device, dtype):
nt = self.random_nt(device, dtype, 4, (4, 4))
# error case: empty shape
self.assertRaisesRegex(
RuntimeError,
r"shape '\[\]' is invalid for a nested tensor",
lambda: nt.reshape(())
)
# error case: empty nested tensor
nt_empty = torch.nested_tensor([])
self.assertRaisesRegex(
RuntimeError,
"empty nested tensor cannot be reshaped",
lambda: nt_empty.reshape(-1)
)
# error case: invalid proposed shape for underlying tensors
self.assertRaisesRegex(
RuntimeError,
r"invalid shape dimension -2",
lambda: nt.reshape(-2, 2, 3)
)
self.assertRaisesRegex(
RuntimeError,
r"shape '\[.*\]' is invalid for input of size [0-9]+",
lambda: nt.reshape(4, 2, 3)
)
# normal case
x0 = torch.randn((2, 20), device=device, dtype=dtype)
x1 = torch.randn((3, 20), device=device, dtype=dtype)
nt = torch.nested_tensor([x0, x1])
pt = nt.to_padded_tensor(0.0)
self.assertRaisesRegex(
RuntimeError,
r"for now reshape cannot change the implicit batch dimension",
lambda: nt.transpose(-1, -2).reshape(40, -1)
)
# inherit only the ragged dimension
# (2, 20) -> (2, 5, 4)
# (3, 20) -> (3, 5, 4)
nt1 = nt.reshape(2, -1, 5, 4)
# (2, 3, 20) -> (2, 3, 5, 4) -> (2, 4, 5, 4)
pt1 = pt.reshape(2, -1, 5, 4)
self.assertEqual(noncontiguous_to_padded_tensor(nt1), pt1)
# also inherit regular dimension
nt2 = nt1.reshape(2, -1, -1, 2, 2)
pt2 = pt1.reshape(2, -1, 5, 2, 2)
self.assertEqual(noncontiguous_to_padded_tensor(nt2), pt2)
@parametrize("input_dim", [3, 4])
def test_scaled_dot_product_attention(self, device, input_dim):
def rand_tensor(*shape):
return torch.randn(shape, device=device)
E = 10
if input_dim == 3:
# Shape: (N, L, E); ragged L
query = torch.nested_tensor([rand_tensor(2, E), rand_tensor(3, E), rand_tensor(4, E)])
# Shape: (N, S, E); ragged S
key = torch.nested_tensor([rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)])
value = torch.nested_tensor([rand_tensor(3, E), rand_tensor(4, E), rand_tensor(5, E)])
elif input_dim == 4:
# Shape: (N, N', L, E); ragged N' and L
query = torch.nested_tensor([rand_tensor(2, 2, E), rand_tensor(3, 3, E), rand_tensor(4, 4, E)])
# Shape: (N, N', S, E); ragged N' and S
key = torch.nested_tensor([rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)])
value = torch.nested_tensor([rand_tensor(2, 3, E), rand_tensor(3, 4, E), rand_tensor(4, 5, E)])
else:
self.fail(f"Invalid input_dim {input_dim} encountered in SDP test")
def rand_mask(size):
return torch.randint(0, 2, size=size, dtype=torch.bool, device=device)
# Shape: (N, L, S); ragged L and S matching above
attn_mask = torch.nested_tensor([rand_mask((2, 3)), rand_mask((3, 4)), rand_mask((4, 5))])
dropout_p = 0.0 # no dropout for reproducibility
need_attn_weights: bool = True
# Success case: no attn_mask set and is_causal=False.
actual = torch.ops.aten._scaled_dot_product_attention(
query, key, value, attn_mask=None, dropout_p=dropout_p, need_attn_weights=need_attn_weights)
expected_outputs = []
expected_attn_weights = []
for q, k, v in zip(query.unbind(), key.unbind(), value.unbind()):
(output, attn_weights) = torch.ops.aten._scaled_dot_product_attention(
q.unsqueeze(0), k.unsqueeze(0), v.unsqueeze(0), attn_mask=None, dropout_p=dropout_p,
need_attn_weights=need_attn_weights)
expected_outputs.append(output.squeeze(0))
expected_attn_weights.append(attn_weights.squeeze(0))
expected_output_nested = torch.nested_tensor(expected_outputs)
expected_attn_weight_nested = torch.nested_tensor(expected_attn_weights)
self.assertEqual(actual[0], expected_output_nested)
self.assertEqual(actual[1], expected_attn_weight_nested)
# Error case: explicit attn_mask set.
with self.assertRaisesRegex(RuntimeError, "not supported when an explicit attn_mask is set"):
torch.ops.aten._scaled_dot_product_attention(
query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, need_attn_weights=need_attn_weights)
# Error case: is_causal=True.
with self.assertRaisesRegex(RuntimeError, "not supported when is_causal=True"):
torch.ops.aten._scaled_dot_product_attention(
query, key, value, dropout_p=dropout_p, need_attn_weights=need_attn_weights, is_causal=True)
class TestNestedTensorAutograd(TestCase):
# Note [Gradcheck args check_batched_grad=False] the common_utils testing version of gradcheck
# includes the default parameters used for testing ops with gradcheck. However nested tensor
# does not support the stack op therefore we turn it off for these tests
def _create_nested_tensor_from_list(self, requires_grad=False):
return torch.nested_tensor([torch.randn(1, 2, requires_grad=requires_grad),
torch.randn(7, 8, requires_grad=requires_grad)])
def _create_nested_tensor_from_mask(self, requires_grad=False):
data = torch.randn(2, 3, 4, requires_grad=requires_grad)
mask = torch.ones_like(data[:, :, 0]).bool()
return torch._nested_tensor_from_mask(data, mask)
def test_set_requires_grad_from_list(self):
nt = self._create_nested_tensor_from_list()
nt.requires_grad_()
assert nt.requires_grad
def test_set_requires_grad_from_mask(self):
nt = self._create_nested_tensor_from_mask()
nt.requires_grad_()
assert nt.requires_grad
def test_backward_for_add_op(self):
nt_1 = self._create_nested_tensor_from_mask()
nt_2 = self._create_nested_tensor_from_mask()
nt_1.requires_grad_()
c = nt_1 + nt_2
assert nt_1.requires_grad
assert c.requires_grad
grad_output = self._create_nested_tensor_from_mask()
c.backward(grad_output)
# Grad check doesn't work with nested yet.
# d/dnt_1 (nt + nt_1) = 1*grad_output
self.assertEqual(nt_1.grad, grad_output)
# Test Factory Functions
def test_nested_tensor_to_padded_tensor(self):
for padding_val in [0, 1]:
nt = torch.nested_tensor([torch.randn(1, 2), torch.randn(7, 8)])
nt.requires_grad_()
out = nt.to_padded_tensor(padding_val)
grad_output = torch.ones(out.shape)
out.backward(grad_output)
self.assertEqual(nt.grad, torch.nested_tensor([torch.ones(1, 2), torch.ones(7, 8)]))
def test_nested_tensor_from_mask_and_to_padded(self):
N, L, D = 2, 4, 4
mask = torch.ones(N, L)
for i in range(1, N):
end = torch.randint(1, L - 1, (1,))
mask[i, end:] = 0
mask[0, :] = 1
mask = mask.bool()
data = torch.randn(N, L, D, requires_grad=True, dtype=torch.float64)
def grad_test_func(inpt):
nt = torch._nested_tensor_from_mask(inpt, mask)
# This implicitly tests to_padded_tensor grads
return nt.to_padded_tensor(0)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_from_padded(self):
nested_size = torch.tensor([[1, 2], [2, 2]])
padded_tensor = torch.randn(2, 2, 2, dtype=torch.float64)
padded_tensor[0, 1, :] = 0
padded_tensor.requires_grad_()
def grad_test_func(tensor, nested_size):
nt = torch._nested_from_padded(tensor, nested_size, fuse_transform_0213=False)
# This implicitly tests to_padded_tensor grads
return nt.to_padded_tensor(0)
data = (padded_tensor, nested_size)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_from_padded_fused(self):
nested_size = torch.tensor([[1, 8], [2, 8]])
padded_tensor = torch.randn(2, 2, 2, 4, dtype=torch.float64)
padded_tensor[0, 1, :] = 0
padded_tensor.requires_grad_()
def grad_test_func(tensor, nested_size):
nt = torch._nested_from_padded(tensor, nested_size, fuse_transform_0213=True)
# This implicitly tests to_padded_tensor grads
return nt.to_padded_tensor(0)
data = (padded_tensor, nested_size)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_from_list(self):
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64)
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64)
c = torch.randn(10, 2, requires_grad=True, dtype=torch.float64)
def grad_test_func(a, b, c):
c = torch.nested_tensor([a, b, c])
# This implictily tests to_padded_tensor grads
return c.to_padded_tensor(0)
data = (a, b, c)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_size_dim(self):
a = torch.nested_tensor([])
self.assertEqual(a.size(0), 0)
a = torch.nested_tensor([torch.tensor(1)])
self.assertEqual(a.size(0), 1)
a = torch.nested_tensor([torch.tensor(1), torch.tensor(2)])
self.assertEqual(a.size(0), 2)
a = torch.nested_tensor([torch.rand(1, 2),
torch.rand(1, 8)])
self.assertEqual(a.size(0), 2)
self.assertEqual(a.size(1), 1)
self.assertRaisesRegex(
RuntimeError, "Given dimension 2 is irregular and does not have a size", lambda: a.size(2))
a = torch.nested_tensor([torch.rand(3, 4),
torch.rand(5, 4)])
self.assertEqual(a.size(0), 2)
self.assertRaisesRegex(
RuntimeError, "Given dimension 1 is irregular and does not have a size", lambda: a.size(1))
self.assertEqual(a.size(2), 4)
def test_dropout_backward(self):
nt = torch.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))]).requires_grad_(True)
p = 0.2
y = torch.nn.functional.dropout(nt, p)
y.backward(nt.clone())
self.assertEqual(nt.grad, y)
def test_nested_tensor_bmm_gradcheck(self):
a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64)
b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64)
c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64)
d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64)
def grad_test_func(a, b, c, d):
nt0 = torch.nested_tensor([a, b])
nt1 = torch.nested_tensor([c, d])
result = nt0.bmm(nt1)
return result.to_padded_tensor(0.0)
data = (a, b, c, d)
assert torch.autograd.gradcheck(grad_test_func, inputs=data)
def test_nested_tensor_bmm_backward(self):
nt0 = torch.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))]).requires_grad_(True)
nt1 = torch.nested_tensor([torch.randn((6, 4)), torch.randn((6, 5))]).requires_grad_(True)
with torch.no_grad():
pt0 = nt0.to_padded_tensor(0.0).requires_grad_(True)
pt1 = nt1.to_padded_tensor(0.0).requires_grad_(True)
ynt = nt0.bmm(nt1)
ypt = pt0.bmm(pt1)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(nt0.grad.to_padded_tensor(0.0), pt0.grad)
self.assertEqual(nt1.grad.to_padded_tensor(0.0), pt1.grad)
def test_nested_tensor_matmul_gradcheck(self):
a = torch.randn(2, 6, requires_grad=True, dtype=torch.float64)
b = torch.randn(3, 6, requires_grad=True, dtype=torch.float64)
c = torch.randn(6, 4, requires_grad=True, dtype=torch.float64)
d = torch.randn(6, 5, requires_grad=True, dtype=torch.float64)
def grad_test_func(a, b, c, d):
nt0 = torch.nested_tensor([a, b])
nt1 = torch.nested_tensor([c, d])
result = torch.matmul(nt0, nt1)
return result.to_padded_tensor(0.0)
data = (a, b, c, d)
assert torch.autograd.gradcheck(grad_test_func, inputs=data)
def test_nested_tensor_matmul_backward(self):
nt0 = torch.nested_tensor([torch.randn((7, 2, 6)), torch.randn((7, 3, 6))]).requires_grad_(True)
nt1 = torch.nested_tensor([torch.randn((7, 6, 4)), torch.randn((7, 6, 5))]).requires_grad_(True)
with torch.no_grad():
pt0 = nt0.to_padded_tensor(0.0).requires_grad_(True)
pt1 = nt1.to_padded_tensor(0.0).requires_grad_(True)
ynt = torch.matmul(nt0, nt1)
ypt = torch.matmul(pt0, pt1)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(nt0.grad.to_padded_tensor(0.0), pt0.grad)
self.assertEqual(nt1.grad.to_padded_tensor(0.0), pt1.grad)
def test_nested_tensor_transpose_gradcheck(self):
a = torch.randn(2, 5, requires_grad=True)
b = torch.randn(3, 4, requires_grad=True)
def grad_test_func(a, b):
nt = torch.nested_tensor([a, b])
result = nt.transpose(-2, -1).transpose(-2, -1)
return result.to_padded_tensor(0.0)
data = (a, b)
assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3)
def test_nested_tensor_transpose_backward(self):
nt = torch.nested_tensor([torch.randn((2, 5)), torch.randn((3, 4))]).requires_grad_(True)
with torch.no_grad():
pt = nt.to_padded_tensor(0.0).requires_grad_(True)
ynt = nt.transpose(-2, -1)
ypt = pt.transpose(-2, -1)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(nt.grad.to_padded_tensor(0.0), pt.grad)
def test_nested_tensor_reshape_gradcheck(self):
a = torch.randn(2, 6, requires_grad=True)
b = torch.randn(3, 6, requires_grad=True)
def grad_test_func(a, b):
nt = torch.nested_tensor([a, b])
result = nt.reshape(2, -1, 2, 3)
return result.to_padded_tensor(0.0)
data = (a, b)
assert torch.autograd.gradcheck(grad_test_func, inputs=data, eps=1e-3)
def test_nested_tensor_reshape_backward(self):
nt = torch.nested_tensor([torch.randn((2, 6)), torch.randn((3, 6))]).requires_grad_(True)
with torch.no_grad():
pt = nt.to_padded_tensor(0.0).requires_grad_(True)
ynt = nt.reshape(2, -1, 2, 3)
ypt = pt.reshape(2, -1, 2, 3)
ynt.backward(ynt.clone())
ypt.backward(ypt.clone())
self.assertEqual(nt.grad.to_padded_tensor(0.0), pt.grad)
def test_nested_tensor_linear(self):
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64)
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64)
c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64)
weight = torch.randn(2, 2, requires_grad=True, dtype=torch.float64)
bias = torch.randn(2, requires_grad=True, dtype=torch.float64)
def grad_test_func(a, b, c, weight, bias=None):
nt = torch.nested_tensor([a, b, c])
# This implicitly tests to_padded_tensor grads
d = torch.functional.F.linear(nt, weight, bias)
return d.to_padded_tensor(0)
data = (a, b, c, weight, bias)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
# Test linear with no bias added
data = (a, b, c, weight)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_softmax(self):
a = torch.randn(1, 2, requires_grad=True, dtype=torch.float64)
b = torch.randn(2, 2, requires_grad=True, dtype=torch.float64)
c = torch.randn(3, 2, requires_grad=True, dtype=torch.float64)
def grad_test_func(a, b, c, dim):
nt = torch.nested_tensor([a, b, c])
# This implicitly tests to_padded_tensor grads
d = torch.functional.F.softmax(nt, dim=dim)
return d.to_padded_tensor(0)
# softmax over last dim
data = (a, b, c, -1)
assert gradcheck(grad_test_func, inputs=data, check_batched_grad=False)
def test_nested_tensor_linear_backward(self):
a = torch.randn(1, 2, requires_grad=False)
b = torch.randn(2, 2, requires_grad=False)
c = torch.randn(3, 2, requires_grad=False)
weight = torch.randn(2, 2, requires_grad=True)
bias = torch.randn(2, requires_grad=True)
nt = torch.nested_tensor([a, b, c])
out = torch.functional.F.linear(nt, weight, bias)
out.backward(out.clone())
assert weight.grad is not None
assert bias.grad is not None
assert a.grad is None
assert b.grad is None
assert c.grad is None
instantiate_device_type_tests(TestNestedTensorDeviceType, globals())
if __name__ == '__main__':
run_tests()