pytorch/test/cpp/api
Lingyi Liu 09296c34a4 Add the build for runtime dispatch for AVX, AVX2 instruction set (#26125)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/26125

We already had some optimization implementation using AVX2 for improve the quantized kernel performance. In this diff, we want to enable the runtime dispatch.

Test Plan:
Sandcastle build and test

Also test with a python binary calling into vectorized op.

torch.__config__.show()
PyTorch built with:
  - GCC 4.2
  - clang 8.0.20181009
  - Intel(R) Math Kernel Library Version 2017.0.3 Product Build 20170413 for Intel(R) 64 architecture applications
  - Intel(R) MKL-DNN v0.18.1 (Git Hash N/A)
  - OpenMP 1
  - **CPU capability usage: AVX2**
  - Build settings:

Reviewed By: jamesr66a

Differential Revision: D17337251

fbshipit-source-id: 8e22d10011a12a4eaf54cea3485353eb1811d828
2020-03-10 15:32:57 -07:00
..
any.cpp [C++ API] Allow skipping default arguments in module's forward method when module is used in Sequential (#33027) 2020-02-17 20:38:02 -08:00
autograd.cpp [autograd] fix allow_unused checking for C++ API (#34035) 2020-03-02 17:57:15 -08:00
CMakeLists.txt Remove using namespace torch::autograd from header files (#34423) 2020-03-09 10:31:21 -07:00
dataloader.cpp Fix typos (#30606) 2019-12-02 20:17:42 -08:00
dispatch.cpp Add the build for runtime dispatch for AVX, AVX2 instruction set (#26125) 2020-03-10 15:32:57 -07:00
enum.cpp Use c10::variant-based enums for F::grid_sample 2019-11-12 16:05:26 -08:00
expanding-array.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
functional.cpp Fix torch::allclose to handle std::numeric_limits<T>::lowest() for integral types (#32978) 2020-02-04 19:06:52 -08:00
init_baseline.h Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init_baseline.py Kaiming Initialization (#14718) 2019-02-15 14:58:22 -08:00
init.cpp Add allow_rebase_history flag and fix codegen functions for multiple views (#32790) 2020-02-11 07:16:02 -08:00
integration.cpp Normalize reward-to-go in C++ actor-critic (#33550) 2020-02-21 09:19:39 -08:00
jit.cpp Remove attempToRecoverType (#26767) 2019-10-16 11:07:13 -07:00
memory.cpp Hide c10::optional and nullopt in torch namespace (#12927) 2018-10-26 00:08:04 -07:00
misc.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
module.cpp Remove dead includes in caffe2/test 2020-01-21 11:30:34 -08:00
modulelist.cpp [C++ API] Fix ModuleList compile error: error: 'begin' was not declared in this scope (#34463) 2020-03-09 08:15:50 -07:00
modules.cpp Remove dead includes in caffe2/test 2020-01-21 11:30:34 -08:00
namespace.cpp Remove using namespace torch::autograd from header files (#34423) 2020-03-09 10:31:21 -07:00
nn_utils.cpp [C++ API] Add PackedSequence / pack_padded_sequence / pad_packed_sequence / pack_sequence (#33652) 2020-02-25 12:53:41 -08:00
optim_baseline.h Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim_baseline.py Use torch:: instead of at:: in all C++ APIs (#13523) 2018-11-06 14:32:25 -08:00
optim.cpp Adagrad optimizer - updated step function, added param_groups, state to optimizers 2020-01-21 14:41:12 -08:00
ordered_dict.cpp Change C++ API test files to only include torch/torch.h (#27067) 2019-10-10 09:46:29 -07:00
parallel.cpp Fix bugs in torch::tensor constructor (#28523) 2019-10-31 12:53:06 -07:00
README.md Rewrite C++ API tests in gtest (#11953) 2018-09-21 21:28:16 -07:00
rnn.cpp Fix typos, via a Levenshtein-type corrector (#31523) 2020-01-17 16:03:19 -08:00
sequential.cpp C++ make torch::nn::Sequential push_back(AnyModule) methods public (#34208) 2020-03-06 05:47:14 -08:00
serialize.cpp [C++ API Parity] rmsprop optimizer update (#33450) 2020-03-10 13:30:56 -07:00
static.cpp Re-organize C++ API torch::nn folder structure (#26262) 2019-09-17 10:07:29 -07:00
support.cpp Use default dtype for torch::tensor(floating_point_values) and torch::tensor(empty braced-init-list) when dtype is not specified (#29632) 2019-11-13 15:17:11 -08:00
support.h C++ tensor indexing: more indexing tests (#30427) 2020-02-28 22:07:41 -08:00
tensor_cuda.cpp Fix MagmaInitializesCorrectly_CUDA by using an invertible matrix (#32547) 2020-01-25 20:00:54 -08:00
tensor_indexing.cpp [C++ API] Remove init-list form of at::indexing::Slice (#34255) 2020-03-06 05:51:53 -08:00
tensor_options_cuda.cpp Deprecate tensor.type() (#30281) 2019-12-05 10:55:34 -08:00
tensor_options.cpp Deprecate tensor.type() (#30281) 2019-12-05 10:55:34 -08:00
tensor.cpp Bug fixes: torch::tensor(floating-point values) -> default dtype, and torch::tensor(integer values) ->at::kLong (#32367) 2020-02-01 15:00:07 -08:00
torch_include.cpp Relax set_num_threads restriction in parallel native case (#27947) 2019-10-16 21:53:36 -07:00

C++ Frontend Tests

In this folder live the tests for PyTorch's C++ Frontend. They use the GoogleTest test framework.

CUDA Tests

To make a test runnable only on platforms with CUDA, you should suffix your test with _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_CUDA) { }

To make it runnable only on platforms with at least two CUDA machines, suffix it with _MultiCUDA instead of _CUDA, e.g.

TEST(MyTestSuite, MyTestCase_MultiCUDA) { }

There is logic in main.cpp that detects the availability and number of CUDA devices and supplies the appropriate negative filters to GoogleTest.

Integration Tests

Integration tests use the MNIST dataset. You must download it by running the following command from the PyTorch root folder:

$ python tools/download_mnist.py -d test/cpp/api/mnist

The required paths will be referenced as test/cpp/api/mnist/... in the test code, so you must run the integration tests from the PyTorch root folder.