mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
XLA changes: https://github.com/pytorch/xla/pull/6486 Test Plan: CI Differential Revision: D53316196 Pull Request resolved: https://github.com/pytorch/pytorch/pull/119095 Approved by: https://github.com/ydwu4, https://github.com/zhxchen17, https://github.com/tugsbayasgalan, https://github.com/avikchaudhuri, https://github.com/jerryzh168
202 lines
9.8 KiB
Python
202 lines
9.8 KiB
Python
import logging
|
|
from collections import defaultdict
|
|
from typing import Tuple, Dict, Optional, List
|
|
|
|
import torch
|
|
from torch.export import export
|
|
from torch._export.pass_base import _ExportPassBaseDeprecatedDoNotUse
|
|
from torch._export.pass_infra.node_metadata import NodeMetadata
|
|
from torch._export.pass_infra.proxy_value import ProxyValue
|
|
from torch._subclasses import FakeTensor
|
|
from torch.fx.node import Target, Argument
|
|
from torch.library import Library
|
|
from torch.utils._pytree import tree_unflatten
|
|
import torch._export.exported_program as ep
|
|
import re
|
|
|
|
lib = Library("aten", "FRAGMENT")
|
|
impl_lib = Library("aten", "IMPL")
|
|
|
|
log = logging.getLogger(__name__)
|
|
|
|
|
|
def get_target_version(versioned_upgrader_name: str) -> int:
|
|
"""div_Scalar_0_3 is the name of the upgrader, meaning it applies to div.Scalar of version 0 to 3 and is
|
|
upgrading to version 4."""
|
|
if not re.match("^.*_[0-9]+_[0-9]+$", versioned_upgrader_name):
|
|
raise RuntimeError(f"Upgrader name {versioned_upgrader_name} is invalid")
|
|
|
|
return int(versioned_upgrader_name.split('_')[-1]) + 1
|
|
|
|
|
|
def get_upgraders() -> Dict[str, Tuple[str, str]]:
|
|
"""Getting upgraders entry map and operator version map and merge them into one dict."""
|
|
upgraders = torch._C._get_upgraders_entry_map()
|
|
op_version_map = torch._C._get_operator_version_map()
|
|
output: Dict[str, Tuple[str, str]] = defaultdict(tuple) # type: ignore[arg-type]
|
|
for opname, entry_list in op_version_map.items():
|
|
if not entry_list:
|
|
raise RuntimeError(f"Op version map has an empty entry for opname {opname}")
|
|
entry = entry_list[0]
|
|
old_schema = entry.old_schema
|
|
upgrader_name = entry.upgrader_name
|
|
upgrader_str = upgraders.get(upgrader_name, None)
|
|
if not upgrader_str:
|
|
raise RuntimeError(f"Can't find upgrader for op {opname} and upgrader name {upgrader_name}")
|
|
output[upgrader_name] = (old_schema, upgrader_str)
|
|
return output
|
|
|
|
|
|
class GraphModuleOpUpgrader:
|
|
"""This upgrader is able to upgrade the old version of ops in a given GraphModule, if all upgraders are available.
|
|
To use it, retrieve upgraders from somewhere (TorchScript API or new API) and pass it into this upgrader. In
|
|
__init__() it does the following:
|
|
1. parse the upgrader list and reorder for upgrading purpose.
|
|
2. register old versions of operators as custom ops.
|
|
3. prepare upgrader passes.
|
|
|
|
In `upgrade()` API run these upgrader passes.
|
|
|
|
An example of op_upgraders input:
|
|
{
|
|
"aten::div__Scalar_0_3": ( # versioned op name
|
|
"div._Scalar(self: Tensor, other: Scalar)", # old schema
|
|
'''
|
|
def div__Scalar_0_3(self: torch.Tensor, other) -> torch.Tensor: # upgrader in literal string
|
|
if (self.is_floating_point() or isinstance(other, float)):
|
|
return self.true_divide_(other)
|
|
return self.divide_(other, rounding_mode='trunc')
|
|
''',
|
|
),
|
|
},
|
|
|
|
Note that we require the upgrader function to be runnable in Python (which is a stricter requirement than the
|
|
original TorchScript upgrader).
|
|
"""
|
|
|
|
class UpgraderPass(_ExportPassBaseDeprecatedDoNotUse):
|
|
def __init__(self, old_target: Target, new_target: Target):
|
|
super().__init__()
|
|
self.old_target = old_target
|
|
self.new_target = new_target
|
|
|
|
def call_operator(
|
|
self,
|
|
op,
|
|
args: Tuple[Argument, ...],
|
|
kwargs: Dict[str, Argument],
|
|
meta: NodeMetadata,
|
|
) -> ProxyValue:
|
|
if op == self.old_target:
|
|
return super().call_operator(self.new_target, args, kwargs, meta)
|
|
return super().call_operator(op, args, kwargs, meta)
|
|
|
|
def __init__(
|
|
self,
|
|
compiler_opset_version: Optional[Dict[str, int]] = None,
|
|
model_opset_version: Optional[Dict[str, int]] = None,
|
|
op_upgraders: Optional[Dict[str, Tuple[str, str]]] = None,
|
|
):
|
|
self.op_upgraders: Dict[str, Tuple[str, str]] = get_upgraders() if not op_upgraders else op_upgraders
|
|
self.compiler_opset_version = compiler_opset_version if compiler_opset_version else {}
|
|
self.model_opset_version = model_opset_version if model_opset_version else {}
|
|
self.upgrader_passes: List[GraphModuleOpUpgrader.UpgraderPass] = GraphModuleOpUpgrader._populate_passes(
|
|
self._parse_upgraders(self.op_upgraders))
|
|
|
|
def _parse_upgraders(self, op_upgraders: Optional[Dict[str, Tuple[str, str]]] = None) -> List[Tuple[str, str]]:
|
|
"""Reorder op_upgraders by version number, return an ordered list of tuples, containing old op schema as well
|
|
as the upgrader function string literal."""
|
|
# TODO(larryliu0820): Add support for custom ops
|
|
op_namespace = "aten"
|
|
if not op_upgraders or op_namespace not in self.model_opset_version or op_namespace not in self.compiler_opset_version:
|
|
return []
|
|
model_ver = self.model_opset_version[op_namespace]
|
|
curr_ver = self.compiler_opset_version[op_namespace]
|
|
|
|
# key is the target version. div__Scalar_0_3 should have a key of 4.
|
|
versioned_upgraders: Dict[int, Tuple[str, str]] = {get_target_version(name): v for name, v in
|
|
op_upgraders.items()}
|
|
target_upgraders: List[Tuple[str, str]] = []
|
|
# we need all upgraders from model_ver + 1 to curr_ver, inclusively
|
|
for ver in range(model_ver + 1, curr_ver + 1):
|
|
if ver in versioned_upgraders:
|
|
target_upgraders.append(versioned_upgraders[ver])
|
|
else:
|
|
# we may be able to get away with missing upgraders, if that operator is missing from given graph
|
|
# module.
|
|
log.warning("Missing an upgrader to upgrade to version {ver}.", extra={"ver": ver})
|
|
|
|
return target_upgraders
|
|
|
|
@staticmethod
|
|
def _populate_passes(upgraders: List[Tuple[str, str]]) -> List[UpgraderPass]:
|
|
"""Given a list of upgraders, loop through it from lower version to higher version and create passes for all
|
|
upgraders. se torch.Library API to register old ops. Op name will be
|
|
<name>_<valid_from_ver>_<valid_till_ver>. Register upgraders as CompositeImplicitAutograd kernels. For example:
|
|
|
|
lib = Library("aten", "FRAGMENT")
|
|
lib.define(old_schema)
|
|
|
|
impl_lib = Library("aten", "IMPL")
|
|
impl_lib.impl("div__Scalar_0_3", div__Scalar_0_3, "CompositeImplicitAutograd")
|
|
|
|
@:var upgraders: a list of tuples. The first element of the tuple is the old schema and the second is the
|
|
upgrader function literal text.
|
|
@:return upgrader passes, order matters
|
|
"""
|
|
|
|
upgrader_passes = []
|
|
|
|
def register_old_op(name: str, schema: str, impl_str: str):
|
|
"""Registers an old version operator using impl_name as old op name."""
|
|
lib.define(schema)
|
|
try:
|
|
exec(impl_str)
|
|
except Exception as e:
|
|
raise RuntimeError(f"Invalid upgrader string: {impl_str}") from e
|
|
impl_lib.impl(name, locals()[name], "CompositeImplicitAutograd")
|
|
|
|
for (schema, upgrader_str) in upgraders:
|
|
upgrader_name = upgrader_str.split('(')[0].split(' ')[-1]
|
|
op_name = schema.split('(')[0].split("::")[-1]
|
|
schema = schema.replace(op_name, upgrader_name)
|
|
try:
|
|
register_old_op(name=upgrader_name, schema=schema, impl_str=upgrader_str)
|
|
except RuntimeError as e:
|
|
if "with the same name and overload name multiple times" in str(e):
|
|
print(f"Registering {upgrader_name} multiple times")
|
|
else:
|
|
raise RuntimeError from e
|
|
old_op_target = getattr(torch.ops.aten, upgrader_name).default
|
|
# for example, the operator instance of "aten::div" is torch.op.aten.div.default. We need to append the
|
|
# "default" at the end.
|
|
op_name, overload_name = (op_name, "default") if "." not in op_name else tuple(op_name.split(".")[:2])
|
|
new_op_target = getattr(getattr(torch.ops.aten, op_name), overload_name)
|
|
# Note that the graph will have op names in the graph, but actually they are of old versions.
|
|
upgrader_passes.append(
|
|
GraphModuleOpUpgrader.UpgraderPass(old_target=new_op_target, new_target=old_op_target))
|
|
|
|
return upgrader_passes
|
|
|
|
def upgrade(self, exported_program: ep.ExportedProgram) -> ep.ExportedProgram:
|
|
"""Run each upgrader pass and then retrace to decompose it. Each upgrader pass replaces the old version of
|
|
operators with a custom operator. The custom operator contains a CompositeImplicitAutograd kernel (the
|
|
upgrading function itself). After retrace, this custom operator will be decomposed into the ops used in the
|
|
upgrader. After all passes are applied, the exported program will be upgraded to the target version."""
|
|
if not self.upgrader_passes:
|
|
return exported_program
|
|
|
|
args = [n.meta.get("val", None) for n in exported_program.graph.nodes if n.op == "placeholder"]
|
|
args_real_tensors = [torch.ones(tuple(arg.size()), dtype=arg.dtype) if isinstance(arg, FakeTensor) else arg for
|
|
arg in args]
|
|
assert exported_program.call_spec.in_spec is not None
|
|
args, kwargs = tree_unflatten(args_real_tensors, exported_program.call_spec.in_spec)
|
|
assert kwargs == {}
|
|
|
|
for _pass in self.upgrader_passes:
|
|
upgraded_program = exported_program._transform_do_not_use(_pass)
|
|
# NB: we have to retrace the graph_module instead of ep because of some failure.
|
|
exported_program = export(upgraded_program.module(), args, kwargs)
|
|
|
|
return exported_program
|