pytorch/caffe2/python/modeling/initializers_test.py
Simon Layton 2bfacff426 Fp16 training initializers
Summary:
Adds support for generating and training pfp16 models. Added SGD optimizer for multi-precision trainers and a new callback to data_parallel_model in order to help multi-precision models keep their different copies of parameters in sync during training.
Closes https://github.com/caffe2/caffe2/pull/697

Differential Revision: D5159712

Pulled By: salexspb

fbshipit-source-id: 60a889494d2e2f4df1d720331e19f638c5eb95cc
2017-05-31 17:46:58 -07:00

46 lines
1.5 KiB
Python

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import unittest
from caffe2.python import brew, model_helper
from caffe2.python.modeling.initializers import (
Initializer, pFP16Initializer)
class InitializerTest(unittest.TestCase):
def test_fc_initializer(self):
model = model_helper.ModelHelper(name="test")
data = model.net.AddExternalInput("data")
fc1 = brew.fc(model, data, "fc1", dim_in=1, dim_out=1)
# no operator name set, will use default
fc2 = brew.fc(model, fc1, "fc2", dim_in=1, dim_out=1,
WeightInitializer=Initializer)
# no operator name set, will use custom
fc3 = brew.fc(model, fc2, "fc3", dim_in=1, dim_out=1,
WeightInitializer=Initializer,
weight_init=("ConstantFill", {}),
)
# operator name set, no initializer class set
fc4 = brew.fc(model, fc3, "fc4", dim_in=1, dim_out=1,
WeightInitializer=None,
weight_init=("ConstantFill", {})
)
# default operator, pFP16Initializer
fc5 = brew.fc(model, fc4, "fc5", dim_in=1, dim_out=1,
WeightInitializer=pFP16Initializer
)
# specified operator, pFP16Initializer
fc6 = brew.fc(model, fc4, "fc5", dim_in=1, dim_out=1,
weight_init=("ConstantFill", {}),
WeightInitializer=pFP16Initializer
)