mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: This diff is reverting D34455360 (61d6c43864) D34455360 (61d6c43864) is making the following tests to fail and this revert diff is either the revert of the blame diff or the revert of the stack of diffs that need to be reverted to revert the blame diff Tests affected: - https://www.internalfb.com/intern/test/562950004334605/ Multisect link: https://www.internalfb.com/intern/testinfra/multisect/756170 Test Plan: NA Reviewed By: zhxchen17 Differential Revision: D34596156 fbshipit-source-id: a465bca0094db3caf6130c80f1ed49eea981359b (cherry picked from commit ef5e5578c64ce9827570757fb016aafa9c782c6a)
779 lines
26 KiB
C++
779 lines
26 KiB
C++
#include <gtest/gtest.h>
|
|
#include <test/cpp/jit/test_utils.h>
|
|
#include <torch/csrc/jit/api/module.h>
|
|
#include <torch/csrc/jit/backends/backend_detail.h>
|
|
#include <torch/csrc/jit/mobile/import.h>
|
|
#include <torch/csrc/jit/serialization/import.h>
|
|
#include <torch/torch.h>
|
|
|
|
// Tests go in torch::jit
|
|
namespace torch {
|
|
namespace jit {
|
|
TEST(BackendTest, ToBackend) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return self.accum(x, h), self.sub_accum(x, h)
|
|
|
|
def accum(self, x, h):
|
|
return x + h
|
|
|
|
def sub_accum(self, x, h):
|
|
return x - h
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(2.0 * torch::ones({}));
|
|
inputs.emplace_back(1.0 * torch::ones({}));
|
|
auto ref = m.forward(inputs).toTupleRef().elements().vec();
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"test_backend", m, compile_spec, any_dict_ty);
|
|
// lowered module code:
|
|
/*
|
|
class test_backendLoweredModule(Module):
|
|
__parameters__ = []
|
|
__buffers__ = []
|
|
__processed_module : Any
|
|
__method_compile_spec : Dict[str, Any]
|
|
__backend : __torch__.torch.classes.__backends__.test_backend
|
|
__handles : Dict[str, Any]
|
|
def __create_backend(self: torch.jit.test_backendLoweredModule) -> None:
|
|
_0 =
|
|
__torch__.torch.classes.__backends__.test_backend.__new__(__torch__.torch.classes.__backends__.test_backend)
|
|
_1 = (_0).__init__()
|
|
self.__backend = _0
|
|
return None
|
|
def __getstate__(self: torch.jit.test_backendLoweredModule) ->
|
|
Tuple[Dict[str, Any], Any]: _2 = (self.__method_compile_spec,
|
|
self.__processed_module) return _2 def __setstate__(self:
|
|
torch.jit.test_backendLoweredModule, state: Tuple[Dict[str, Any], Any]) ->
|
|
None: self.__method_compile_spec = (state)[0] self.__processed_module =
|
|
(state)[1] _3 = (self).__create_backend() _4 =
|
|
(self.__backend).compile(self.__processed_module,
|
|
self.__method_compile_spec, ) self.__handles = _4 return None def
|
|
forward(self: torch.jit.test_backendLoweredModule, x: Tensor, h: Tensor) ->
|
|
Tuple[Tensor, Tensor]: _5 = uninitialized(Tensor) typed_inputs =
|
|
annotate(List[Any], [x, h]) _6 =
|
|
(self.__backend).execute((self.__handles)["forward"], typed_inputs, ) _7,
|
|
_8, = _6 _9 = isinstance(_7, Tensor) if _9: _10 = unchecked_cast(Tensor, _7)
|
|
else:
|
|
ops.prim.RaiseException("AssertionError: ")
|
|
_10 = _5
|
|
_11 = isinstance(_8, Tensor)
|
|
if _11:
|
|
_12 = unchecked_cast(Tensor, _8)
|
|
else:
|
|
ops.prim.RaiseException("AssertionError: ")
|
|
_12 = _5
|
|
return (_10, _12)
|
|
|
|
*/
|
|
auto res = lm.forward(inputs).toTupleRef().elements().vec();
|
|
AT_ASSERT(res[0].toTensor().equal(ref[0].toTensor()));
|
|
AT_ASSERT(res[1].toTensor().equal(ref[1].toTensor()));
|
|
}
|
|
|
|
TEST(BackendTest, ToBackendNotAvailable) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return self.accum(x, h), self.sub_accum(x, h)
|
|
|
|
def accum(self, x, h):
|
|
return x + h
|
|
|
|
def sub_accum(self, x, h):
|
|
return x - h
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(2.0 * torch::ones({}));
|
|
inputs.emplace_back(1.0 * torch::ones({}));
|
|
auto ref = m.forward(inputs).toTupleRef().elements().vec();
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// Produce lowered module (backend not available).
|
|
// Exception is not thrown at this point.
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"test_backend_unavailable", m, compile_spec, any_dict_ty);
|
|
// Validate exception is thrown when trying to execute and
|
|
// the backend is not available.
|
|
ASSERT_THROWS_WITH_MESSAGE(
|
|
lm.forward(inputs).toTupleRef().elements(), "Backend is not available.");
|
|
}
|
|
|
|
TEST(BackendTest, TestCompiler) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return x + h
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(2.0 * torch::ones({}));
|
|
inputs.emplace_back(1.0 * torch::ones({}));
|
|
auto ref = m.forward(inputs);
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
|
|
auto res = lm.forward(inputs);
|
|
AT_ASSERT(res.toTensor().equal(ref.toTensor()));
|
|
|
|
std::stringstream ss;
|
|
lm._save_for_mobile(ss);
|
|
auto mlm = _load_for_mobile(ss);
|
|
auto mres = mlm.forward(inputs);
|
|
AT_ASSERT(mres.toTensor().equal(ref.toTensor()));
|
|
}
|
|
|
|
TEST(BackendTest, TestComposite) {
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
|
|
Module m_add("m_add");
|
|
m_add.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
auto lm_add = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", m_add, compile_spec, any_dict_ty);
|
|
|
|
Module m_sub("m_sub");
|
|
m_sub.define(R"(
|
|
def forward(self, x, y):
|
|
return x - y
|
|
)");
|
|
auto lm_sub = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", m_sub, compile_spec, any_dict_ty);
|
|
|
|
Module c("C");
|
|
c.register_module("Add", lm_add);
|
|
c.register_module("Sub", lm_sub);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.Add.forward(x, y) * self.Sub.forward(x, y)
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(3.0 * torch::ones({}));
|
|
inputs.emplace_back(1.0 * torch::ones({}));
|
|
auto res_jit = c.forward(inputs);
|
|
|
|
std::stringstream ss;
|
|
c._save_for_mobile(ss);
|
|
auto mc = _load_for_mobile(ss);
|
|
auto res_mobile = mc.forward(inputs);
|
|
|
|
AT_ASSERT(res_jit.toTensor().equal(res_mobile.toTensor()));
|
|
}
|
|
|
|
TEST(BackendTest, TestPrimDtype) {
|
|
Module c("name");
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
c = y.dtype
|
|
return c
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(3.0 * torch::ones({}));
|
|
inputs.emplace_back(1.0 * torch::ones({}));
|
|
auto res_jit = c.forward(inputs);
|
|
|
|
std::stringstream ss;
|
|
c._save_for_mobile(ss);
|
|
auto mc = _load_for_mobile(ss);
|
|
auto res_mobile = mc.forward(inputs);
|
|
|
|
ASSERT_EQ(res_jit.toInt(), res_mobile.toInt());
|
|
}
|
|
|
|
Module getCompositeModuleWithSameNameSubModules() {
|
|
// Two submodules with same module name but different forward and other
|
|
// functions should be serialized and loaded correctly.
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
|
|
Module sub1("m_add");
|
|
sub1.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
auto lowered_sub1 = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", sub1, compile_spec, any_dict_ty);
|
|
|
|
Module sub2("m_add");
|
|
sub2.define(R"(
|
|
def forward(self, x, y):
|
|
return x - y
|
|
)");
|
|
auto lowered_sub2 = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", sub2, compile_spec, any_dict_ty);
|
|
|
|
Module c("C");
|
|
c.register_module("Add", lowered_sub1);
|
|
c.register_module("Sub", lowered_sub2);
|
|
c.define(R"(
|
|
def forward(self, a, b, s:int):
|
|
c = self.Add.forward(a, b)
|
|
d = self.Sub.forward(a, b)
|
|
y = s * (c * d)
|
|
return y
|
|
)");
|
|
|
|
return c;
|
|
}
|
|
|
|
TEST(BackendTest, TestCompositeWithSetStates) {
|
|
Module c = getCompositeModuleWithSameNameSubModules();
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::ones({}));
|
|
inputs.emplace_back(3.0 * torch::ones({}));
|
|
inputs.emplace_back(3);
|
|
auto res_jit = c.forward(inputs);
|
|
|
|
std::stringstream ss;
|
|
c._save_for_mobile(ss);
|
|
auto mc = _load_for_mobile(ss);
|
|
auto res_mobile = mc.forward(inputs);
|
|
AT_ASSERT(res_jit.toTensor().equal(res_mobile.toTensor()));
|
|
}
|
|
|
|
TEST(BackendTest, TestConsistencyOfCompositeWithSetStates) {
|
|
Module c = getCompositeModuleWithSameNameSubModules();
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::ones({}));
|
|
inputs.emplace_back(3.0 * torch::ones({}));
|
|
inputs.emplace_back(3);
|
|
|
|
std::stringstream ss, ss_resave;
|
|
c._save_for_mobile(ss);
|
|
auto mc = _load_for_mobile(ss);
|
|
auto res_mobile = mc.forward(inputs);
|
|
|
|
// check if the methods names are always the same
|
|
// by reloading the script module and saving it back as mobile
|
|
// The below checks ensure that the names of Methods
|
|
// and numerical outputs of mobile and reloaded mobile
|
|
// modules are same.
|
|
auto script_module_load = torch::jit::load(ss);
|
|
script_module_load._save_for_mobile(ss_resave);
|
|
auto mc_reload = _load_for_mobile(ss_resave);
|
|
auto res_mobile_reload = mc_reload.forward(inputs);
|
|
|
|
AT_ASSERT(res_mobile_reload.toTensor().equal(res_mobile.toTensor()));
|
|
|
|
auto mc_methods = mc.get_methods();
|
|
auto mc_reload_methods = mc_reload.get_methods();
|
|
|
|
std::vector<std::string> mc_method_qns, mc_reload_method_qns;
|
|
|
|
auto get_qual_name = [](mobile::Method method) -> std::string {
|
|
return method.function().qualname().qualifiedName();
|
|
};
|
|
|
|
std::transform(
|
|
mc_methods.begin(),
|
|
mc_methods.end(),
|
|
std::back_inserter(mc_method_qns),
|
|
get_qual_name);
|
|
|
|
std::transform(
|
|
mc_reload_methods.begin(),
|
|
mc_reload_methods.end(),
|
|
std::back_inserter(mc_reload_method_qns),
|
|
get_qual_name);
|
|
|
|
AT_ASSERT(std::equal(
|
|
mc_method_qns.begin(),
|
|
mc_method_qns.end(),
|
|
mc_reload_method_qns.begin()));
|
|
}
|
|
|
|
TEST(BackendTest, TestCompilerNotSupport) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return x * h
|
|
)");
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
ASSERT_THROWS_WITH_MESSAGE(
|
|
torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", m, compile_spec, any_dict_ty),
|
|
"The node of aten::mul is not supported in this compiler. Source code:");
|
|
}
|
|
|
|
TEST(BackendTestDebugInfo, TestCompiler) {
|
|
Module m("m");
|
|
m.define(R"(
|
|
def forward(self, x, h):
|
|
return x + h
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", m, compile_spec, any_dict_ty);
|
|
|
|
std::stringstream ss;
|
|
lm._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto mlm = _load_for_mobile(ss);
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(m)::<unknown>.__loweredModule__(m)::forward.aten::add
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x: Tensor, h: Tensor):
|
|
return self.__loweredModule__.forward(x, h)
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 5, in forward
|
|
typed_inputs: List[Any] = [x, h, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x, h):
|
|
return x + h
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
|
|
}
|
|
|
|
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithModuleHierarchy) {
|
|
Module a("A");
|
|
a.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
Module b("B");
|
|
b.define(R"(
|
|
def forward(self, x):
|
|
return x + 2
|
|
)");
|
|
Module c("C");
|
|
c.register_module("A0", a);
|
|
c.register_module("B0", b);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
|
|
|
|
std::stringstream ss;
|
|
lm._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto mlm = _load_for_mobile(ss);
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(C)::<unknown>.__loweredModule__(C)::forward.A0(A)::forward.aten::add
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x: Tensor, y: Tensor):
|
|
return self.__loweredModule__.forward(x, y)
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 5, in forward
|
|
typed_inputs: List[Any] = [x, y, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in forward
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
|
|
}
|
|
|
|
TEST(
|
|
BackendTestDebugInfo,
|
|
TestExceptionStackForCompilerWithTwoLevelModuleHierarchy) {
|
|
Module a("A");
|
|
a.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
Module b("B");
|
|
b.register_module("A0", a);
|
|
b.define(R"(
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + 2
|
|
)");
|
|
Module c("C");
|
|
c.register_module("B0", b);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.B0.forward(x, y) + 3
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lm = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", c, compile_spec, any_dict_ty);
|
|
|
|
std::stringstream ss;
|
|
lm._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto mlm = _load_for_mobile(ss);
|
|
/*
|
|
* Error stack throw will look like this:
|
|
* Module hierarchy:top(backend_with_compiler_demoLoweredModule).B0(B).A0(A)
|
|
* Traceback of TorchScript (most recent call last):
|
|
* File "<string>", line 5, in FunctionName_UNKNOWN
|
|
* typed_inputs: List[Any] = [x, y, ]
|
|
* if self.__backend.is_available() :
|
|
* _0, = self.__backend.execute(self.__handles["forward"],
|
|
* typed_inputs)
|
|
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
* assert isinstance(_0, Tensor)
|
|
* return _0
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return self.B0.forward(x, y) + 3
|
|
* ~~~~~~~~~~~~~~~ <--- HERE
|
|
*
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return self.A0.forward(x, y) + 2
|
|
* ~~~~~~~~~~~~~~~ <--- HERE
|
|
*
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return x + y
|
|
* ~~~~~ <--- HERE
|
|
*
|
|
*/
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(C)::<unknown>.__loweredModule__(C)::forward.B0(B)::forward.A0(A)::forward.aten::add
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x: Tensor, y: Tensor):
|
|
return self.__loweredModule__.forward(x, y)
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 5, in forward
|
|
typed_inputs: List[Any] = [x, y, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x, y):
|
|
return self.B0.forward(x, y) + 3
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in forward
|
|
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + 2
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in forward
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(mlm.forward(inputs), error_pattern);
|
|
}
|
|
|
|
TEST(BackendTestDebugInfo, TestExceptionStackForCompilerWithLoweredSubModule) {
|
|
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
|
|
Module a("A");
|
|
a.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
Module b("B");
|
|
b.define(R"(
|
|
def forward(self, x):
|
|
return x + 2
|
|
)");
|
|
Module c("C");
|
|
c.register_module("A0", a);
|
|
c.register_module("B0", b);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
IValue submodule = c.attr("A0");
|
|
Module current_sm = submodule.toModule();
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
|
|
|
|
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
|
|
c.setattr("A0", lowered_submodule._ivalue());
|
|
std::unordered_map<TypePtr, TypePtr> type_remap;
|
|
type_remap[a.type()] = lowered_submodule.type();
|
|
auto type_remap_fn = [&type_remap](TypePtr in) {
|
|
auto it = type_remap.find(in);
|
|
if (it == type_remap.end())
|
|
return in;
|
|
return it->second;
|
|
};
|
|
for (auto& fn : c.type()->methods()) {
|
|
auto method = c.get_method(fn->name());
|
|
auto graph = method.graph();
|
|
graph->remapTypes(type_remap_fn);
|
|
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
|
|
fn->setSchema(new_schema);
|
|
}
|
|
|
|
std::stringstream ss;
|
|
c._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto c_loaded = _load_for_mobile(ss);
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(C)::<unknown>.A0(A)::forward.__loweredModule__(A)::forward.aten::add
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in forward
|
|
|
|
def forward(self, x: Tensor, y: Tensor):
|
|
return self.__loweredModule__.forward(x, y)
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 5, in forward
|
|
typed_inputs: List[Any] = [x, y, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
|
|
}
|
|
|
|
TEST(
|
|
BackendTestDebugInfo,
|
|
TestExceptionStackForCompilerWithSelectiveLoweredSubModule) {
|
|
std::shared_ptr<CompilationUnit> cu = std::make_shared<CompilationUnit>();
|
|
Module aa("AA");
|
|
aa.define(R"(
|
|
def forward(self, x, y):
|
|
return x + y
|
|
)");
|
|
Module a("A");
|
|
a.register_module("AA0", aa);
|
|
a.define(R"(
|
|
def forward(self, x, y):
|
|
return self.AA0.forward(x, y) + 3
|
|
)");
|
|
Module b("B");
|
|
b.define(R"(
|
|
def forward(self, x):
|
|
return x + 2
|
|
)");
|
|
Module c("C");
|
|
c.register_module("A0", a);
|
|
c.register_module("B0", b);
|
|
c.define(R"(
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
)");
|
|
|
|
std::vector<IValue> inputs;
|
|
inputs.emplace_back(torch::rand({2, 4}));
|
|
inputs.emplace_back(torch::rand({13, 9}));
|
|
|
|
c10::Dict<IValue, IValue> compile_spec(StringType::get(), AnyType::get());
|
|
c10::Dict<IValue, IValue> fake_dict(StringType::get(), AnyType::get());
|
|
fake_dict.insert("", "");
|
|
compile_spec.insert("forward", fake_dict);
|
|
IValue submodule = c.attr("A0");
|
|
Module current_sm = submodule.toModule();
|
|
auto any_dict_ty = DictType::create(StringType::get(), AnyType::get());
|
|
// lowered module
|
|
auto lowered_submodule = torch::jit::detail::codegen_backend_module(
|
|
"backend_with_compiler_demo", current_sm, compile_spec, any_dict_ty);
|
|
|
|
c.type()->unsafeChangeAttributeType("A0", lowered_submodule.type());
|
|
c.setattr("A0", lowered_submodule._ivalue());
|
|
std::unordered_map<TypePtr, TypePtr> type_remap;
|
|
type_remap[a.type()] = lowered_submodule.type();
|
|
auto type_remap_fn = [&type_remap](TypePtr in) {
|
|
auto it = type_remap.find(in);
|
|
if (it == type_remap.end())
|
|
return in;
|
|
return it->second;
|
|
};
|
|
for (auto& fn : c.type()->methods()) {
|
|
auto method = c.get_method(fn->name());
|
|
auto graph = method.graph();
|
|
graph->remapTypes(type_remap_fn);
|
|
auto new_schema = fn->getSchema().cloneWithRemappedTypes(type_remap_fn);
|
|
fn->setSchema(new_schema);
|
|
}
|
|
|
|
std::stringstream ss;
|
|
c._save_for_mobile(ss, ExtraFilesMap(), true);
|
|
auto c_loaded = _load_for_mobile(ss);
|
|
/*
|
|
* Erro stack trace will look like this:
|
|
* Module hierarchy:top(C).A0(backend_with_compiler_demoLoweredModule).AA0(AA)
|
|
* Traceback of TorchScript (most recent call last):
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return self.A0.forward(x, y) + self.B0.forward(x)
|
|
* ~~~~~~~~~~~~~~~ <--- HERE
|
|
*
|
|
* File "<string>", line 5, in FunctionName_UNKNOWN
|
|
* typed_inputs: List[Any] = [x, y, ]
|
|
* if self.__backend.is_available() :
|
|
* _0, = self.__backend.execute(self.__handles["forward"],
|
|
* typed_inputs)
|
|
* ~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
* assert isinstance(_0, Tensor)
|
|
* return _0
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return self.AA0.forward(x, y) + 3
|
|
* ~~~~~~~~~~~~~~~~ <--- HERE
|
|
*
|
|
* File "<string>", line 3, in FunctionName_UNKNOWN
|
|
*
|
|
* def forward(self, x, y):
|
|
* return x + y
|
|
* ~~~~~ <--- HERE
|
|
*
|
|
*
|
|
* */
|
|
std::string error_pattern = R"(
|
|
Module hierarchy:top(C)::<unknown>.A0(A)::forward.__loweredModule__(A)::forward.AA0(AA)::forward.aten::add
|
|
Traceback of TorchScript (most recent call last):
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x, y):
|
|
return self.A0.forward(x, y) + self.B0.forward(x)
|
|
~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in forward
|
|
|
|
def forward(self, x: Tensor, y: Tensor):
|
|
return self.__loweredModule__.forward(x, y)
|
|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 5, in forward
|
|
typed_inputs: List[Any] = [x, y, ]
|
|
if self.__backend.is_available() :
|
|
_0, = self.__backend.execute(self.__handles["forward"], typed_inputs)
|
|
~~~~~~~~~~~~~~~~~~~~~~ <--- HERE
|
|
assert isinstance(_0, Tensor)
|
|
return _0
|
|
File "<string>", line 3, in <unknown>
|
|
|
|
def forward(self, x, y):
|
|
return self.AA0.forward(x, y) + 3
|
|
~~~~~~~~~~~~~~~~ <--- HERE
|
|
|
|
File "<string>", line 3, in forward
|
|
|
|
def forward(self, x, y):
|
|
return x + y
|
|
~~~~~ <--- HERE
|
|
)";
|
|
ASSERT_THROWS_WITH_MESSAGE(c_loaded.forward(inputs), error_pattern);
|
|
}
|
|
|
|
} // namespace jit
|
|
} // namespace torch
|