mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Follow-up: #101173 This PR fixes the bug presented in #101173 by creating a special case for `sympy.Rational` divisors, inside `FloorDiv` evaluation. In summary: ```python FloorDiv(a, Rational(1, b)) a * b ``` Besides that, this PR also does 2 other things: - Replaces the use of the old `sympy.Mod` by the internal `Mod` (there were a few places that were still looking for the SymPy one) - Introduces debugging logs to the translation validator. These can be seen by setting the environment variable: `TORCH_LOGS=+torch.fx.experimental.validator` Pull Request resolved: https://github.com/pytorch/pytorch/pull/106644 Approved by: https://github.com/ezyang ghstack dependencies: #106643
236 lines
7.6 KiB
Python
236 lines
7.6 KiB
Python
import sympy
|
|
from sympy import S
|
|
from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or
|
|
|
|
__all__ = ["FloorDiv", "ModularIndexing", "CleanDiv", "CeilDiv", "LShift", "RShift"]
|
|
|
|
|
|
class FloorDiv(sympy.Function):
|
|
"""
|
|
We maintain this so that:
|
|
1. We can use divisibility guards to simplify FloorDiv(a, b) to a / b.
|
|
2. Printing out the expression is nicer (compared to say, representing a//b as (a - a % b) / b)
|
|
"""
|
|
nargs = (2,)
|
|
precedence = 50 # precedence of mul # noqa: F811
|
|
|
|
# Default return type for SymPy assumptions.
|
|
# https://docs.sympy.org/latest/guides/assumptions.html#implementing-assumptions-handlers
|
|
is_real = True
|
|
|
|
@property
|
|
def base(self):
|
|
return self.args[0]
|
|
|
|
@property
|
|
def divisor(self):
|
|
return self.args[1]
|
|
|
|
def _sympystr(self, printer):
|
|
base = printer.parenthesize(self.base, self.precedence)
|
|
divisor = printer.parenthesize(self.divisor, self.precedence)
|
|
return f"({base}//{divisor})"
|
|
|
|
# SymPy assumptions based on argument types.
|
|
def _eval_is_real(self):
|
|
return fuzzy_or([self.base.is_real, self.divisor.is_real])
|
|
|
|
def _eval_is_integer(self):
|
|
return fuzzy_and([self.base.is_integer, self.divisor.is_integer])
|
|
|
|
# Automatic evaluation.
|
|
# https://docs.sympy.org/latest/guides/custom-functions.html#best-practices-for-eval
|
|
@classmethod
|
|
def eval(cls, base, divisor):
|
|
def check_supported_type(x):
|
|
if (x.is_integer is False and x.is_real is False and x.is_complex) or x.is_Boolean:
|
|
raise TypeError(
|
|
f"unsupported operand type(s) for //: "
|
|
f"'{type(base).__name__}' and '{type(divisor).__name__}'"
|
|
f", expected integer or real")
|
|
|
|
check_supported_type(base)
|
|
check_supported_type(divisor)
|
|
|
|
# We don't provide the same error message as in Python because SymPy
|
|
# makes it difficult to check the types.
|
|
if divisor.is_zero:
|
|
raise ZeroDivisionError("division by zero")
|
|
|
|
if base.is_zero:
|
|
return sympy.S.Zero
|
|
if base.is_integer and divisor == 1:
|
|
return base
|
|
if base.is_real and divisor == 1:
|
|
return sympy.floor(base)
|
|
if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
|
|
return base // divisor
|
|
if isinstance(base, (sympy.Integer, sympy.Float)) and isinstance(divisor, (sympy.Integer, sympy.Float)):
|
|
return sympy.floor(base / divisor)
|
|
if isinstance(base, FloorDiv):
|
|
return FloorDiv(base.args[0], base.args[1] * divisor)
|
|
if isinstance(divisor, sympy.Rational) and divisor.p == 1:
|
|
return sympy.floor(base * divisor.q)
|
|
|
|
if isinstance(base, sympy.Add):
|
|
for a in base.args:
|
|
gcd = sympy.gcd(a, divisor)
|
|
if gcd == divisor:
|
|
return FloorDiv(base - a, divisor) + a / gcd
|
|
|
|
gcd = sympy.gcd(base, divisor)
|
|
if gcd != 1:
|
|
return FloorDiv(
|
|
sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
|
|
)
|
|
|
|
|
|
class ModularIndexing(sympy.Function):
|
|
"""
|
|
ModularIndexing(a, b, c) => (a // b) % c
|
|
"""
|
|
|
|
nargs = (3,)
|
|
is_integer = True
|
|
|
|
@classmethod
|
|
def eval(cls, base, divisor, modulus):
|
|
if base == 0 or modulus == 1:
|
|
return sympy.Integer(0)
|
|
|
|
if (
|
|
isinstance(base, sympy.Integer)
|
|
and isinstance(divisor, sympy.Integer)
|
|
and isinstance(modulus, sympy.Integer)
|
|
):
|
|
return (base // divisor) % modulus
|
|
|
|
if divisor != 1:
|
|
gcd = sympy.gcd(base, divisor)
|
|
if gcd != 1:
|
|
return ModularIndexing(
|
|
sympy.simplify(base / gcd), sympy.simplify(divisor / gcd), modulus
|
|
)
|
|
|
|
if isinstance(base, sympy.Add):
|
|
new_terms = []
|
|
all_positive = True
|
|
for term in base.args:
|
|
if sympy.gcd(term, modulus * divisor) != modulus * divisor:
|
|
if (isinstance(term, sympy.Integer) and term < 0) or (
|
|
isinstance(term, sympy.Mul)
|
|
and isinstance(term.args[0], sympy.Integer)
|
|
and term.args[0] < 0
|
|
):
|
|
# workaround for https://github.com/openai/triton/issues/619,
|
|
# if there are negative terms, // produces wrong result
|
|
# TODO if https://github.com/openai/triton/issues/619 is fixed
|
|
# this optimization would become valid
|
|
all_positive = False
|
|
break
|
|
else:
|
|
new_terms.append(term)
|
|
|
|
if len(new_terms) != len(base.args) and all_positive:
|
|
return ModularIndexing(sum(new_terms), divisor, modulus)
|
|
|
|
if isinstance(base, FloorDiv):
|
|
return ModularIndexing(base.args[0], base.args[1] * divisor, modulus)
|
|
|
|
|
|
class Mod(sympy.Function):
|
|
"""
|
|
We maintain this so that we avoid SymPy correctness issues, such as:
|
|
https://github.com/sympy/sympy/issues/25146
|
|
"""
|
|
|
|
nargs = (2,)
|
|
|
|
@classmethod
|
|
def eval(cls, p, q):
|
|
# This was adapted from: sympy/core/mod.py
|
|
|
|
if q.is_zero:
|
|
raise ZeroDivisionError("Modulo by zero")
|
|
# If either of them is NaN or infinite.
|
|
if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False:
|
|
return S.NaN
|
|
# Three cases:
|
|
# 1. p == 0
|
|
# 2. p is either q or -q
|
|
# 3. p is integer and q == 1
|
|
if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1):
|
|
return S.Zero
|
|
|
|
# Evaluate if they are both literals.
|
|
if q.is_Number and p.is_Number:
|
|
return p % q
|
|
|
|
# If q == 2, it's a matter of whether p is odd or even.
|
|
if q.is_Number and q == 2:
|
|
if p.is_even:
|
|
return S.Zero
|
|
if p.is_odd:
|
|
return S.One
|
|
|
|
# If p is a multiple of q.
|
|
r = p / q
|
|
if r.is_integer:
|
|
return S.Zero
|
|
|
|
# If p < q and its ratio is positive, then:
|
|
# - floor(p / q) = 0
|
|
# - p % q = p - floor(p / q) * q = p
|
|
less = p < q
|
|
if less.is_Boolean and bool(less) and r.is_positive:
|
|
return p
|
|
|
|
def _eval_is_integer(self):
|
|
p, q = self.args
|
|
return fuzzy_and([p.is_integer, q.is_integer, fuzzy_not(q.is_zero)]) # type: ignore[attr-defined]
|
|
|
|
def _eval_is_nonnegative(self):
|
|
return True if self.args[1].is_positive else None # type: ignore[attr-defined]
|
|
|
|
def _eval_is_nonpositive(self):
|
|
return True if self.args[1].is_negative else None # type: ignore[attr-defined]
|
|
|
|
|
|
class CleanDiv(FloorDiv):
|
|
"""
|
|
Div where we can assume no rounding.
|
|
This is to enable future optimizations.
|
|
"""
|
|
|
|
pass
|
|
|
|
|
|
class CeilDiv(sympy.Function):
|
|
"""
|
|
Div used in indexing that rounds up.
|
|
"""
|
|
|
|
is_integer = True
|
|
|
|
def __new__(cls, base, divisor):
|
|
if sympy.gcd(base, divisor) == divisor:
|
|
return CleanDiv(base, divisor)
|
|
else:
|
|
return FloorDiv(base + (divisor - 1), divisor)
|
|
|
|
|
|
class LShift(sympy.Function):
|
|
@classmethod
|
|
def eval(cls, base, shift):
|
|
if shift < 0:
|
|
raise ValueError('negative shift count')
|
|
return base * 2 ** shift
|
|
|
|
|
|
class RShift(sympy.Function):
|
|
@classmethod
|
|
def eval(cls, base, shift):
|
|
if shift < 0:
|
|
raise ValueError('negative shift count')
|
|
return base // 2 ** shift
|