mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/44090 This is an initial commit pulling in the torchgpipe fork at https://github.com/facebookresearch/fairscale. The purpose of this commit is to just pull in the code and ensure all tests and builds work fine. We will slowly modify this to match our intended API mentioned in https://fb.quip.com/txurAV3zIFox#RPZACAfAKMq. Follow up PRs would address further changes needed on top of the initial commit.. We're pulling the code into the `torch.distributed._pipeline.sync` package. The package is private on purpose since there is a lot of work (ex: docs, API changes etc.) that needs to go in before we can actually officially support this. ghstack-source-id: 114864254 Test Plan: 1) waitforbuildbot 2) Ran all tests on my devgpu Reviewed By: mrshenli Differential Revision: D23493316 fbshipit-source-id: fe3c8b7dadeeb86abdc00e8a8652491b0b16743a
159 lines
4.1 KiB
Python
159 lines
4.1 KiB
Python
# Copyright 2019 Kakao Brain
|
|
#
|
|
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
|
#
|
|
# This source code is licensed under the BSD license found in the
|
|
# LICENSE file in the root directory of this source tree.
|
|
from functools import partial
|
|
|
|
import pytest
|
|
import torch
|
|
from torch import nn
|
|
import torch.cuda
|
|
|
|
from torch.distributed._pipeline.sync.checkpoint import Checkpointing, checkpoint, is_checkpointing, is_recomputing
|
|
from torch.distributed._pipeline.sync.dependency import fork, join
|
|
from torch.distributed._pipeline.sync.microbatch import Batch
|
|
|
|
devices = ["cpu"]
|
|
if torch.cuda.is_available():
|
|
devices.append("cuda")
|
|
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_serial_checkpoints(device):
|
|
# Copied from https://github.com/pytorch/pytorch/pull/18568.
|
|
timeline = []
|
|
|
|
class Log(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, name, x):
|
|
ctx.name = name
|
|
timeline.append(f"{name}:forward")
|
|
return x.detach()
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
name = ctx.name
|
|
timeline.append(f"{name}:backward")
|
|
return None, grad_output
|
|
|
|
a = torch.rand(1, device=device, requires_grad=True)
|
|
b = torch.rand(1, device=device, requires_grad=True)
|
|
|
|
# Increase the next function sequence number.
|
|
_ = a + 1 + 2 + 3 + 4 + 5
|
|
|
|
a = checkpoint(partial(Log.apply, "a"), a)
|
|
|
|
a, phony = fork(a)
|
|
b = join(b, phony)
|
|
|
|
b = checkpoint(partial(Log.apply, "b"), b)
|
|
|
|
c = torch.cat((a, b))
|
|
|
|
out = c.sum()
|
|
|
|
# +--> {a} --Checkpoint(Log)--> {a}
|
|
# {out} --Sum--> {c} --Cat ^-----------------------------+
|
|
# +--> {b} --Checkpoint(Log)--> {b} --First--> {b}
|
|
out.backward()
|
|
|
|
assert timeline == ["a:forward", "b:forward", "b:forward", "b:backward", "a:forward", "a:backward"]
|
|
# |----------------------| |-----------------------| |-----------------------|
|
|
# forward pass Checkpoint(Log[b]) Checkpoint(Log[a])
|
|
|
|
|
|
def test_not_requires_grad():
|
|
x = Batch(torch.rand(1, requires_grad=False))
|
|
assert not x[0].requires_grad
|
|
|
|
def f(x):
|
|
return x * 2
|
|
|
|
chk = Checkpointing(f, x)
|
|
x = chk.checkpoint()
|
|
assert x[0].requires_grad
|
|
|
|
chk.recompute(x)
|
|
assert x[0].requires_grad
|
|
|
|
x.tensor.backward()
|
|
|
|
|
|
def test_not_requires_grad_with_parameter():
|
|
x = torch.rand(1, requires_grad=False)
|
|
a = torch.rand(1, requires_grad=True)
|
|
|
|
def f(x):
|
|
return x * a
|
|
|
|
y = checkpoint(f, x)
|
|
y.backward()
|
|
|
|
assert a.grad is not None
|
|
|
|
|
|
@pytest.mark.parametrize("device", devices)
|
|
def test_random_in_checkpoint(device):
|
|
dropout = nn.Dropout(p=0.5)
|
|
|
|
torch.manual_seed(0)
|
|
x = torch.randn(3, 3, device=device, requires_grad=True)
|
|
y = dropout(x)
|
|
y.norm().backward()
|
|
|
|
torch.manual_seed(0)
|
|
chk_x = torch.randn(3, 3, device=device, requires_grad=True)
|
|
chk_y = checkpoint(dropout, chk_x)
|
|
chk_y.norm().backward()
|
|
|
|
assert torch.allclose(x.grad, chk_x.grad)
|
|
|
|
|
|
def test_detect_checkpointing_recomputing():
|
|
logs = []
|
|
|
|
class Detect(nn.Module):
|
|
def forward(self, input):
|
|
logs.append((is_checkpointing(), is_recomputing()))
|
|
return input
|
|
|
|
model = Detect()
|
|
input = torch.rand(1, requires_grad=True)
|
|
|
|
output = checkpoint(model, input)
|
|
output.backward()
|
|
|
|
assert logs == [(True, False), (False, True)]
|
|
|
|
|
|
def test_detect_checkpointing_recomputing_without_checkpoint():
|
|
logs = []
|
|
|
|
class Detect(nn.Module):
|
|
def forward(self, input):
|
|
logs.append((is_checkpointing(), is_recomputing()))
|
|
return input
|
|
|
|
model = Detect()
|
|
input = torch.rand(1, requires_grad=True)
|
|
|
|
output = model(input)
|
|
output.backward()
|
|
|
|
assert logs == [(False, False)]
|
|
|
|
|
|
def test_non_grad_output():
|
|
class ForkNonGrad(nn.Module):
|
|
def forward(self, input):
|
|
return (input * 2, torch.rand(1))
|
|
|
|
model = ForkNonGrad()
|
|
input = torch.rand(1, requires_grad=True)
|
|
|
|
output = checkpoint(model, input)
|
|
output[0].backward()
|