pytorch/test/cpp/api/tensor_options.cpp
Peter Goldsborough 065fdbd500
Created Tensor::to functions (#8643)
* Created Tensor::to functions

* Only have to(dtype) and to(device)

* Ignore requires_grad in TensorOptions(Tensor) constructor
2018-06-20 09:28:08 -07:00

102 lines
3.0 KiB
C++

#include "catch.hpp"
#include <torch/functions.h>
#include <ATen/Context.h>
#include <ATen/Functions.h>
#include <ATen/TensorOptions.h>
#include <vector>
#include <string>
using namespace at;
// A macro so we don't lose location information when an assertion fails.
#define REQUIRE_OPTIONS(device_, index_, type_, layout_) \
REQUIRE(options.device().type() == Device((device_), (index_)).type()); \
REQUIRE(options.device().index() == Device((device_), (index_)).index()); \
REQUIRE(options.dtype() == (type_)); \
REQUIRE(options.layout() == (layout_))
TEST_CASE("TensorOptions/DefaultsToTheRightValues") {
TensorOptions options;
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
}
TEST_CASE("TensorOptions/ReturnsTheCorrectType") {
auto options = TensorOptions().device(kCPU).dtype(kInt).layout(kSparse);
REQUIRE(options.type() == getType(kSparseCPU, kInt));
}
TEST_CASE("TensorOptions/UtilityFunctionsReturnTheRightTensorOptions") {
auto options = dtype(kInt);
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
options = layout(kSparse);
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
options = device({kCUDA, 1});
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
options = device_index(1);
REQUIRE_OPTIONS(kCUDA, 1, kFloat, kStrided);
options = dtype(kByte).layout(kSparse).device({kCUDA, 2}).device_index(3);
REQUIRE_OPTIONS(kCUDA, 3, kByte, kSparse);
}
TEST_CASE("TensorOptions/ConstructsWellFromCPUTypes") {
auto options = TensorOptions();
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
options = TensorOptions({kCPU, 0});
REQUIRE_OPTIONS(kCPU, 0, kFloat, kStrided);
options = TensorOptions(kInt);
REQUIRE_OPTIONS(kCPU, -1, kInt, kStrided);
options = TensorOptions(getType(kSparseCPU, kFloat));
REQUIRE_OPTIONS(kCPU, -1, kFloat, kSparse);
options = TensorOptions(getType(kSparseCPU, kByte));
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
}
TEST_CASE("TensorOptions/ConstructsWellFromCPUTensors") {
auto options = TensorOptions(empty(5, kDouble));
REQUIRE_OPTIONS(kCPU, -1, kDouble, kStrided);
options = TensorOptions(empty(5, getType(kSparseCPU, kByte)));
REQUIRE_OPTIONS(kCPU, -1, kByte, kSparse);
}
TEST_CASE("TensorOptions/ConstructsWellFromVariables") {
auto options = TensorOptions(torch::empty(5));
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
REQUIRE(!options.requires_grad());
options = TensorOptions(torch::empty(5, at::requires_grad()));
REQUIRE_OPTIONS(kCPU, -1, kFloat, kStrided);
REQUIRE(!options.requires_grad());
}
TEST_CASE("Device/ParsesCorrectlyFromString") {
Device device("cpu:0");
REQUIRE(device == Device(kCPU, 0));
device = Device("cpu");
REQUIRE(device == Device(kCPU));
device = Device("cuda:123");
REQUIRE(device == Device(kCUDA, 123));
device = Device("cuda");
REQUIRE(device == Device(kCUDA));
std::vector<std::string> badnesses = {
"", "cud:1", "cuda:", "cpu::1", ":1", "3", "tpu:4", "??"};
for (const auto& badness : badnesses) {
REQUIRE_THROWS(Device(badness));
}
}