mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
The strategy in this PR is pretty straightforward. There are 2 kinds of hooks: 1) Hooks on objects with sources (inputs, params) 2) Hooks on objects w/o sources (intermediaries, and outputs). Note: As outputs can be made simple by how dynamo handles residuals, they could actually be handled as if they were inputs, but, for the sake of this PR, we will refer to hooks as either hooks on inputs (sourced), or hooks on intermediaries (not sourced). The plan: **For tensors w/ a source:** We record registered hooks, store them as a global, and associate them with the tensor in residuals. This means that when dynamo goes to create the frame, where we produce bytecode to stitch together our PT2 modified bytecode with the original eager code, we call `register_hook`. This registration of hooks in residuals is sound because (a) it happens right after a Pt2 frame region ends and (b) we know that the tensor is alive in f_locals, f_globals, or a module in the users invoking frame. This means we can soundly know it will be around to invoke `register_hook` on. As long as we guard on the identity of the lifted function, this is sound to do. **For tensors w/o a source:** Graph break - we will support this in a subsequent PR **Handles:** An interesting new component here is the creation of a `STORE_FAST `->`LOAD_FAST` associated with the handle, the return result of `register_hook`. If the user code stored the result of `register_hook` in a handle, we need to honor that. We do so by interceding into `STORE_FAST`, and recording the name of the local variable as directed by user code. We then honor that same name in the reconstructed bytecode. If the user did not store a hook, we merely pop the produced value to preserve the stack. Pull Request resolved: https://github.com/pytorch/pytorch/pull/108903 Approved by: https://github.com/ezyang ghstack dependencies: #108846, #109092
622 lines
23 KiB
Python
622 lines
23 KiB
Python
import collections
|
|
import contextlib
|
|
import functools
|
|
import importlib
|
|
import inspect
|
|
import itertools
|
|
import random
|
|
import threading
|
|
import types
|
|
from typing import Dict, List
|
|
|
|
import torch.nn
|
|
|
|
from .. import variables
|
|
from ..allowed_functions import is_allowed
|
|
from ..exc import unimplemented
|
|
from ..guards import GuardBuilder
|
|
from ..source import AttrSource, ODictGetItemSource, RandomValueSource
|
|
from ..utils import (
|
|
all_hook_names,
|
|
build_checkpoint_variable,
|
|
check_constant_args,
|
|
get_custom_getattr,
|
|
is_namedtuple_cls,
|
|
is_utils_checkpoint,
|
|
istype,
|
|
namedtuple_fields,
|
|
object_has_getattribute,
|
|
)
|
|
from .base import MutableLocal, VariableTracker
|
|
from .ctx_manager import GenericContextWrappingVariable, NullContextVariable
|
|
from .dicts import ConstDictVariable
|
|
|
|
|
|
class UserDefinedVariable(VariableTracker):
|
|
pass
|
|
|
|
|
|
class UserDefinedClassVariable(UserDefinedVariable):
|
|
def __init__(self, value, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
|
|
def as_python_constant(self):
|
|
return self.value
|
|
|
|
def python_type(self):
|
|
return type(self.value)
|
|
|
|
def var_getattr(self, tx, name: str) -> "VariableTracker":
|
|
from . import ConstantVariable
|
|
from .builder import VariableBuilder
|
|
|
|
options = VariableTracker.propagate(self)
|
|
source = AttrSource(self.source, name) if self.source is not None else None
|
|
try:
|
|
obj = inspect.getattr_static(self.value, name)
|
|
except AttributeError:
|
|
obj = None
|
|
if isinstance(obj, staticmethod):
|
|
return variables.UserFunctionVariable(
|
|
obj.__get__(self.value), source=source, **options
|
|
)
|
|
elif isinstance(obj, classmethod):
|
|
return variables.UserMethodVariable(
|
|
obj.__func__, self, source=source, **options
|
|
)
|
|
|
|
if name in getattr(self.value, "__dict__", {}) or ConstantVariable.is_literal(
|
|
obj
|
|
):
|
|
if source:
|
|
return VariableBuilder(tx, source)(obj).add_options(options)
|
|
elif ConstantVariable.is_literal(obj):
|
|
return ConstantVariable(obj, **options)
|
|
|
|
return super().var_getattr(tx, name)
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
if (
|
|
name == "__subclasses__"
|
|
and len(args) == 0
|
|
and not kwargs
|
|
and "__subclasses__" not in self.value.__dict__
|
|
):
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
options["mutable_local"] = MutableLocal()
|
|
subs_as_vars: List[VariableTracker] = list()
|
|
for sub in self.value.__subclasses__():
|
|
source = AttrSource(tx.import_source(sub.__module__), sub.__name__)
|
|
subs_as_vars.append(
|
|
variables.UserDefinedClassVariable(sub, source=source)
|
|
)
|
|
|
|
return variables.ListVariable(subs_as_vars, **options)
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from ..side_effects import SideEffects
|
|
from .builder import SourcelessBuilder
|
|
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
|
|
if self.value is contextlib.nullcontext:
|
|
return NullContextVariable(**options)
|
|
elif (
|
|
issubclass(type(self.value), type)
|
|
and hasattr(self.value, "__enter__")
|
|
and hasattr(self.value, "__exit__")
|
|
and check_constant_args(args, kwargs)
|
|
and len(kwargs) == 0 # TODO(ybliang): support kwargs
|
|
):
|
|
unwrapped_args = [x.as_python_constant() for x in args]
|
|
return GenericContextWrappingVariable(
|
|
unwrapped_args, cm_obj=self.value(*unwrapped_args), **options
|
|
)
|
|
elif is_namedtuple_cls(self.value):
|
|
fields = namedtuple_fields(self.value)
|
|
field_defaults = self.value._field_defaults
|
|
|
|
items = list(args)
|
|
items.extend([None] * (len(fields) - len(items)))
|
|
|
|
var_tracker_kwargs = {}
|
|
for field_name, var_tracker in zip(fields, items):
|
|
if var_tracker is None:
|
|
if field_name in kwargs:
|
|
field_var = kwargs[field_name]
|
|
else:
|
|
assert field_name in field_defaults
|
|
field_var = SourcelessBuilder()(
|
|
tx, field_defaults[field_name]
|
|
).add_options(options)
|
|
var_tracker_kwargs[field_name] = field_var
|
|
|
|
for name, value in var_tracker_kwargs.items():
|
|
assert name in fields
|
|
items[fields.index(name)] = value
|
|
|
|
assert all(x is not None for x in items)
|
|
return variables.NamedTupleVariable(
|
|
items, self.value, **VariableTracker.propagate(self, items)
|
|
)
|
|
elif (
|
|
inspect.getattr_static(self.value, "__new__", None) in (object.__new__,)
|
|
and SideEffects.cls_supports_mutation_side_effects(self.value)
|
|
and self.source
|
|
):
|
|
var = tx.output.side_effects.track_object_new(
|
|
self.source,
|
|
self.value,
|
|
variables.UnspecializedNNModuleVariable
|
|
if issubclass(self.value, torch.nn.Module)
|
|
else UserDefinedObjectVariable,
|
|
options,
|
|
)
|
|
if (
|
|
inspect.getattr_static(self.value, "__init__", None)
|
|
is torch.nn.Module.__init__
|
|
):
|
|
tx.output.side_effects.store_attr(
|
|
var, "__call_nn_module_init", variables.ConstantVariable(True)
|
|
)
|
|
return var
|
|
else:
|
|
return var.add_options(var.call_method(tx, "__init__", args, kwargs))
|
|
elif variables.DataClassVariable.is_matching_cls(self.value):
|
|
options["mutable_local"] = MutableLocal()
|
|
return variables.DataClassVariable.create(self.value, args, kwargs, options)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def const_getattr(self, tx, name):
|
|
if name == "__name__":
|
|
return self.value.__name__
|
|
return super().const_getattr(tx, name)
|
|
|
|
|
|
class UserDefinedObjectVariable(UserDefinedVariable):
|
|
"""
|
|
Mostly objects of defined type. Catch-all for something where we only know the type.
|
|
"""
|
|
|
|
def __init__(self, value, value_type=None, **kwargs):
|
|
super().__init__(**kwargs)
|
|
self.value = value
|
|
self.value_type = value_type or type(value)
|
|
assert type(value) is self.value_type
|
|
|
|
def __str__(self):
|
|
inner = self.value_type.__name__
|
|
if inner in [
|
|
"builtin_function_or_method",
|
|
"getset_descriptor",
|
|
"method_descriptor",
|
|
"method",
|
|
]:
|
|
inner = str(getattr(self.value, "__name__", None))
|
|
return f"{self.__class__.__name__}({inner})"
|
|
|
|
def python_type(self):
|
|
return self.value_type
|
|
|
|
@staticmethod
|
|
@functools.lru_cache(None)
|
|
def _supported_random_functions():
|
|
fns = {
|
|
random.random,
|
|
random.randint,
|
|
random.randrange,
|
|
random.uniform,
|
|
}
|
|
return fns
|
|
|
|
def call_method(
|
|
self,
|
|
tx,
|
|
name,
|
|
args: "List[VariableTracker]",
|
|
kwargs: "Dict[str, VariableTracker]",
|
|
) -> "VariableTracker":
|
|
from . import (
|
|
BuiltinVariable,
|
|
ConstantVariable,
|
|
TupleVariable,
|
|
UserMethodVariable,
|
|
)
|
|
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
|
|
if name not in getattr(self.value, "__dict__", {}):
|
|
try:
|
|
method = inspect.getattr_static(type(self.value), name)
|
|
except AttributeError:
|
|
method = None
|
|
if method is object.__init__:
|
|
return ConstantVariable(None, **options)
|
|
|
|
if method is collections.OrderedDict.keys and self.source:
|
|
# subclass of OrderedDict
|
|
assert not (args or kwargs)
|
|
keys = list(self.value.keys())
|
|
assert all(map(ConstantVariable.is_literal, keys))
|
|
return TupleVariable(
|
|
[ConstantVariable(k, **options) for k in keys], **options
|
|
).add_guard(self.source.make_guard(GuardBuilder.ODICT_KEYS))
|
|
|
|
if (
|
|
method in (collections.OrderedDict.__contains__, dict.__contains__)
|
|
and len(args) == 1
|
|
and isinstance(args[0], (ConstantVariable, BuiltinVariable))
|
|
and inspect.getattr_static(type(self.value), "keys")
|
|
in (collections.OrderedDict.keys, dict.keys)
|
|
):
|
|
assert not kwargs
|
|
return ConstantVariable(
|
|
args[0].as_python_constant() in self.value, **options
|
|
).add_guard(self.source.make_guard(GuardBuilder.ODICT_KEYS))
|
|
|
|
if (
|
|
method is collections.OrderedDict.items
|
|
and isinstance(self.value, collections.OrderedDict)
|
|
and self.source
|
|
):
|
|
assert not (args or kwargs)
|
|
items = []
|
|
keys = self.call_method(tx, "keys", [], {})
|
|
options = VariableTracker.propagate(self, args, kwargs.values(), keys)
|
|
for key in keys.unpack_var_sequence(tx):
|
|
items.append(
|
|
TupleVariable(
|
|
[key, self.odict_getitem(tx, key)],
|
|
**options,
|
|
)
|
|
)
|
|
return TupleVariable(items, **options)
|
|
|
|
if method is collections.OrderedDict.__getitem__ and len(args) == 1:
|
|
assert not kwargs
|
|
return self.odict_getitem(tx, args[0])
|
|
|
|
# check for methods implemented in C++
|
|
if isinstance(method, types.FunctionType):
|
|
source = (
|
|
None
|
|
if self.source is None
|
|
else AttrSource(AttrSource(self.source, "__class__"), name)
|
|
)
|
|
# TODO(jansel): add a guard to check for monkey patching?
|
|
return UserMethodVariable(
|
|
method, self, source=source, **options
|
|
).call_function(tx, args, kwargs)
|
|
|
|
return super().call_method(tx, name, args, kwargs)
|
|
|
|
def is_supported_random(self):
|
|
try:
|
|
return self.value in self._supported_random_functions()
|
|
except TypeError:
|
|
# TypeError: unhashable type
|
|
return False
|
|
|
|
def call_function(
|
|
self, tx, args: "List[VariableTracker]", kwargs: "Dict[str, VariableTracker]"
|
|
) -> "VariableTracker":
|
|
from .builder import VariableBuilder
|
|
|
|
if (
|
|
self.is_supported_random()
|
|
and all(k.is_python_constant() for k in args)
|
|
and all(v.is_python_constant() for v in kwargs.values())
|
|
):
|
|
args = [x.as_python_constant() for x in args]
|
|
kwargs = {k: v.as_python_constant() for k, v in kwargs.items()}
|
|
random_call_index = len(tx.random_calls)
|
|
example_value = self.value(*args, **kwargs)
|
|
source = RandomValueSource(random_call_index)
|
|
tx.random_calls.append((self.value, args, kwargs))
|
|
return VariableBuilder(tx, source).wrap_unspecialized_primitive(
|
|
example_value
|
|
)
|
|
elif istype(self.value, types.MethodType):
|
|
func = self.value.__func__
|
|
obj = self.value.__self__
|
|
if (
|
|
func is torch.utils._contextlib._DecoratorContextManager.clone
|
|
and is_allowed(obj.__class__)
|
|
and not (args or kwargs)
|
|
):
|
|
return variables.TorchVariable(obj.__class__).call_function(
|
|
tx, args, kwargs
|
|
)
|
|
elif (
|
|
istype(self.value, functools.partial)
|
|
and is_allowed(self.value.func)
|
|
and all(
|
|
variables.ConstantVariable.is_literal(v)
|
|
for v in itertools.chain(self.value.args, self.value.keywords.values())
|
|
)
|
|
):
|
|
options = VariableTracker.propagate(self, args, kwargs.values())
|
|
options.setdefault("guards", set())
|
|
if self.source:
|
|
options["guards"].add(
|
|
AttrSource(self.source, "func").make_guard(GuardBuilder.ID_MATCH)
|
|
)
|
|
options["guards"].add(
|
|
AttrSource(self.source, "args").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
)
|
|
)
|
|
options["guards"].add(
|
|
AttrSource(self.source, "keywords").make_guard(
|
|
GuardBuilder.CONSTANT_MATCH
|
|
)
|
|
)
|
|
|
|
partial_args = [variables.ConstantVariable(v) for v in self.value.args]
|
|
partial_args.extend(args)
|
|
partial_kwargs = {
|
|
k: variables.ConstantVariable(v) for k, v in self.value.keywords.items()
|
|
}
|
|
partial_kwargs.update(kwargs)
|
|
if is_utils_checkpoint(self.value.func):
|
|
options["source"] = self.source
|
|
return build_checkpoint_variable(**options).call_function(
|
|
tx, partial_args, partial_kwargs
|
|
)
|
|
return variables.TorchVariable(self.value.func, **options).call_function(
|
|
tx, partial_args, partial_kwargs
|
|
)
|
|
elif callable(self.value):
|
|
self.add_guard(self.source.make_guard(GuardBuilder.FUNCTION_MATCH))
|
|
return self.call_method(tx, "__call__", args, kwargs)
|
|
|
|
return super().call_function(tx, args, kwargs)
|
|
|
|
def _check_for_getattribute(self):
|
|
if object_has_getattribute(self.value):
|
|
unimplemented("UserDefinedObjectVariable with custom __getattribute__")
|
|
|
|
def _check_for_getattr(self):
|
|
return get_custom_getattr(self.value)
|
|
|
|
def _getattr_static(self, name):
|
|
if (
|
|
isinstance(self.value, torch.nn.Module)
|
|
or "__slots__" in self.value.__class__.__dict__
|
|
or type(self.value) == threading.local
|
|
):
|
|
# getattr_static doesn't work on these
|
|
subobj = getattr(self.value, name)
|
|
else:
|
|
subobj = inspect.getattr_static(self.value, name)
|
|
return subobj
|
|
|
|
def var_getattr(self, tx, name):
|
|
from . import ConstantVariable
|
|
from .builder import VariableBuilder
|
|
|
|
options = VariableTracker.propagate(self)
|
|
value = self.value
|
|
source = AttrSource(self.source, name) if self.source else None
|
|
self._check_for_getattribute()
|
|
getattr_fn = self._check_for_getattr()
|
|
|
|
try:
|
|
subobj = self._getattr_static(name)
|
|
except AttributeError:
|
|
subobj = None
|
|
if isinstance(getattr_fn, types.FunctionType):
|
|
return variables.UserMethodVariable(
|
|
getattr_fn, self, source=source, **options
|
|
).call_function(tx, [ConstantVariable(name)], {})
|
|
elif getattr_fn is not None:
|
|
unimplemented("UserDefined with non-function __getattr__")
|
|
|
|
if isinstance(subobj, property):
|
|
return variables.UserMethodVariable(
|
|
subobj.fget, self, source=source, **options
|
|
).call_function(tx, [], {})
|
|
elif isinstance(subobj, torch.distributions.utils.lazy_property):
|
|
subobj_var = UserDefinedObjectVariable(subobj, source=source, **options)
|
|
return variables.UserMethodVariable(
|
|
subobj.__get__.__func__, subobj_var, source=source, **options
|
|
).call_function(tx, [self], {})
|
|
elif isinstance(subobj, staticmethod):
|
|
return variables.UserFunctionVariable(
|
|
subobj.__get__(self.value), source=source, **options
|
|
)
|
|
elif isinstance(subobj, classmethod):
|
|
return variables.UserMethodVariable(
|
|
subobj.__func__, self, source=source, **options
|
|
)
|
|
elif isinstance(subobj, types.FunctionType) or (
|
|
isinstance(subobj, types.MethodType)
|
|
and isinstance(self.value, torch.nn.Module)
|
|
):
|
|
# Since we get subobj via self._getattr_static, which may not trigger dynamic lookup.
|
|
# Static lookup can't tell us it's a method or function correctly,
|
|
# so we trigger dynamic lookup here to get the correct type.
|
|
dynamic_subobj = getattr(self.value, name)
|
|
|
|
while dynamic_subobj is subobj and hasattr(subobj, "_torchdynamo_inline"):
|
|
subobj = subobj._torchdynamo_inline
|
|
dynamic_subobj = subobj
|
|
source = AttrSource(source, "_torchdynamo_inline") if source else None
|
|
|
|
if isinstance(subobj, types.MethodType):
|
|
if dynamic_subobj.__self__ is not self.value:
|
|
unimplemented("__self__ mismatch for bound method")
|
|
func = subobj.__func__
|
|
source = AttrSource(source, "__func__") if source else None
|
|
else:
|
|
assert isinstance(subobj, types.FunctionType)
|
|
func = subobj
|
|
|
|
if inspect.ismethod(dynamic_subobj):
|
|
return variables.UserMethodVariable(
|
|
func, self, source=source, **options
|
|
)
|
|
elif inspect.isfunction(dynamic_subobj):
|
|
if is_utils_checkpoint(func):
|
|
options["source"] = source
|
|
return build_checkpoint_variable(**options)
|
|
elif is_allowed(func):
|
|
return variables.TorchVariable(func, source=source, **options)
|
|
return variables.UserFunctionVariable(func, source=source, **options)
|
|
|
|
if (
|
|
name in getattr(value, "__dict__", {})
|
|
or ConstantVariable.is_literal(subobj)
|
|
or isinstance(
|
|
subobj,
|
|
(
|
|
torch.Tensor,
|
|
torch.nn.Module,
|
|
),
|
|
)
|
|
):
|
|
if source:
|
|
return VariableBuilder(tx, source)(subobj).add_options(options)
|
|
elif ConstantVariable.is_literal(subobj):
|
|
return ConstantVariable(subobj, **options)
|
|
|
|
if (
|
|
name not in getattr(value, "__dict__", {})
|
|
and type(value).__module__.startswith("torch.")
|
|
and "torch.optim" not in type(value).__module__
|
|
and not callable(value)
|
|
):
|
|
if not source:
|
|
assert getattr(
|
|
importlib.import_module(type(value).__module__),
|
|
type(value).__name__,
|
|
) is type(value)
|
|
source = AttrSource(
|
|
AttrSource(
|
|
tx.import_source(type(value).__module__), type(value).__name__
|
|
),
|
|
name,
|
|
)
|
|
|
|
return VariableBuilder(tx, source)(subobj).add_options(options)
|
|
options["source"] = source
|
|
if isinstance(
|
|
subobj,
|
|
(
|
|
torch.distributions.constraints._Interval,
|
|
torch.distributions.constraints._Real,
|
|
torch.distributions.constraints.Constraint,
|
|
),
|
|
):
|
|
return UserDefinedObjectVariable(subobj, **options)
|
|
elif isinstance(self.value, torch.nn.Module) and name in all_hook_names:
|
|
assert isinstance(subobj, collections.OrderedDict)
|
|
if not subobj:
|
|
return variables.ConstDictVariable(
|
|
subobj, collections.OrderedDict, **options
|
|
)
|
|
|
|
if name == "__class__":
|
|
return UserDefinedClassVariable(type(self.value), **options)
|
|
|
|
return variables.GetAttrVariable(self, name, **options)
|
|
|
|
def call_hasattr(self, tx, name: str) -> "VariableTracker":
|
|
if tx.output.side_effects.is_attribute_mutation(self):
|
|
try:
|
|
result = tx.output.side_effects.load_attr(self, name, deleted_ok=True)
|
|
return variables.ConstantVariable(
|
|
not isinstance(result, variables.DeletedVariable)
|
|
).add_options(self, result)
|
|
except KeyError:
|
|
pass
|
|
options = VariableTracker.propagate(self)
|
|
if self.source:
|
|
options["guards"].add(
|
|
AttrSource(self.source, name).make_guard(GuardBuilder.HASATTR)
|
|
)
|
|
if self._check_for_getattribute() or self._check_for_getattr():
|
|
unimplemented("hasattr with custom __getattr__")
|
|
|
|
try:
|
|
self._getattr_static(name)
|
|
return variables.ConstantVariable(True, **options)
|
|
except AttributeError:
|
|
return variables.ConstantVariable(False, **options)
|
|
|
|
def odict_getitem(self, tx, key):
|
|
from .builder import VariableBuilder
|
|
|
|
index = (
|
|
key.source
|
|
if ConstDictVariable.is_valid_key(key) and key.source is not None
|
|
else key.as_python_constant()
|
|
)
|
|
|
|
return VariableBuilder(
|
|
tx,
|
|
ODictGetItemSource(self.source, index),
|
|
)(
|
|
collections.OrderedDict.__getitem__(self.value, key.as_python_constant())
|
|
).add_options(key, self)
|
|
|
|
|
|
class KeyedJaggedTensorVariable(UserDefinedObjectVariable):
|
|
@staticmethod
|
|
def is_matching_object(obj):
|
|
try:
|
|
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
|
|
except (ImportError, AttributeError):
|
|
return False
|
|
else:
|
|
return type(obj) is KeyedJaggedTensor
|
|
|
|
def __init__(self, value, **kwargs):
|
|
from torchrec.sparse.jagged_tensor import KeyedJaggedTensor
|
|
|
|
assert type(value) is KeyedJaggedTensor
|
|
super().__init__(value, **kwargs)
|
|
|
|
# TODO Handle getattr for _length_per_key and _offset_per_key properly.
|
|
|
|
|
|
class RemovableHandleVariable(VariableTracker):
|
|
def __init__(
|
|
self,
|
|
mutable_local=None,
|
|
# index of the registration in the side_effects owned register_hook/handle list, used during removal.
|
|
idx=None,
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
self.mutable_local = mutable_local
|
|
self.idx = idx
|
|
|
|
def call_method(self, tx, method_name, args, kwargs):
|
|
if method_name == "remove":
|
|
tx.output.side_effects.remove_hook(self.idx)
|
|
return variables.ConstantVariable(None)
|
|
super().call_method(tx, method_name, args, kwargs)
|
|
|
|
# This reconstruct is actually pretty unique - it does not construct the object from scratch.
|
|
# Handles always come from a register_hook call on a tensor, and so, rerunning that for the codegen of a
|
|
# hook would be incorrect.
|
|
# Instead, the invariant is that codegen has already produced the handle and stored it at a known name.
|
|
def reconstruct(self, codegen):
|
|
if self.user_code_variable_name:
|
|
# It is an invariant that at this point, a STORE_FAST was executed for this name.
|
|
return [codegen.create_load(self.user_code_variable_name)]
|
|
return super().reconstruct(codegen)
|