pytorch/torch/testing/_internal/common_optimizers.py
Jane Xu 05d60931b3 Migrate test_peak_mem_multi_tensor_optimizers to OptimizerInfo (#115023)
Replace the following:
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (1bbf1c6f)]$ python test/test_optim.py -k test_peak_mem_multi_tensor_optimizers
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
.
----------------------------------------------------------------------
Ran 1 test in 38.599s

OK
```

with 11 tests (one for each foreach optim :))
```
(pytorch-3.10) [janeyx@devgpu023.odn1 ~/local/pytorch (1bbf1c6f)]$ python test/test_optim.py -k TestOptimRenewedCUDA.test_foreach_memory
/home/janeyx/.conda/envs/pytorch-3.10/lib/python3.10/site-packages/scipy/__init__.py:146: UserWarning: A NumPy version >=1.17.3 and <1.25.0 is required for this version of SciPy (detected version 1.26.0
  warnings.warn(f"A NumPy version >={np_minversion} and <{np_maxversion}"
...........
----------------------------------------------------------------------
Ran 11 tests in 39.293s

OK
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/115023
Approved by: https://github.com/albanD
ghstack dependencies: #114802
2023-12-20 22:49:44 +00:00

1114 lines
38 KiB
Python

import functools
import itertools
import math
from enum import Enum
from typing import Any, Dict, List, Tuple, Union
import torch
from torch import Tensor
from torch.nn import Parameter
from torch.optim import (
Adadelta,
Adagrad,
Adam,
Adamax,
AdamW,
ASGD,
LBFGS,
NAdam,
Optimizer,
RAdam,
RMSprop,
Rprop,
SGD,
SparseAdam,
)
from torch.testing._internal.common_methods_invocations import DecorateInfo
from torch.testing._internal.common_utils import (
_TestParametrizer,
set_single_threaded_if_parallel_tbb,
skipIfTorchDynamo,
)
class OptimizerInput:
"""Contains args / kwargs to be passed to an optimizer constructor."""
__slots__ = ["params", "kwargs", "desc"]
def __init__(
self,
params: Union[List[Parameter], List[Tensor], Dict[Any, Any]],
kwargs: Dict[str, Any],
desc: str = "",
):
# params can be a list of Tensors OR param_groups OR None
self.params = params
self.kwargs = kwargs
self.desc = desc
class OptimizerErrorEnum(Enum):
"""Enumerates when an error is raised when testing optimizers."""
CONSTRUCTION_ERROR = 0
STEP_ERROR = 1
class ErrorOptimizerInput:
"""
An OptimizerInput that will cause the optimizer to throw an error when constructed.
Includes the type and string of the resulting error.
"""
__slots__ = ["optimizer_error_input", "error_on", "error_type", "error_regex"]
def __init__(
self,
optimizer_error_input,
*,
error_on=OptimizerErrorEnum.CONSTRUCTION_ERROR,
error_type=RuntimeError,
error_regex="",
):
self.optimizer_error_input = optimizer_error_input
self.error_on = error_on
self.error_type = error_type
self.error_regex = error_regex
class OptimizerInfo:
"""Optimizer information to be used in testing."""
def __init__(
self,
optim_cls: Optimizer, # Class object for the Optimizer under test
*,
# Function to generate optimizer inputs EXCLUDING params. We delegate params responsibility
# to the test using the OptimizerInfo. OptimizerInput.params is likely None.
optim_inputs_func,
# A subset of the global-cliquey flags (fused, foreach, differentiable) the optimizer
# supports. See NOTE: [optimizer kwarg categories] for what global-cliquey means.
supported_impls: Tuple[str] = ("foreach", "differentiable"),
# the devices on which the optim supports sparse tensors for params and grads, see SGD
supports_sparse_on: Tuple[str] = (),
# the optim only supports one config: sparse grads w/ dense params, see SparseAdam
only_supports_sparse_grads: bool = False,
# whether the optimizer.step() function requires a closure to be passed
step_requires_closure: bool = False,
# whether the optimizer supports per-param options with parameter groups
supports_param_groups: bool = True,
# whether the optimizer supports parameters on multiple devices
supports_multiple_devices: bool = True,
skips=(), # Indicates which tests to skip
decorators=None, # Additional decorators to apply to generated tests
optim_error_inputs_func=None, # Function to generate optim inputs that error
):
self.optim_cls = optim_cls
self.optim_inputs_func = optim_inputs_func
self.supported_impls = supported_impls
self.supports_sparse_on = supports_sparse_on
self.only_supports_sparse_grads = only_supports_sparse_grads
self.step_requires_closure = step_requires_closure
self.supports_param_groups = supports_param_groups
self.supports_multiple_devices = supports_multiple_devices
self.decorators = (
*(decorators if decorators else []),
*(skips if skips else []),
)
self.optim_error_inputs_func = optim_error_inputs_func
def get_decorators(self, test_class, test_name, device, dtype, param_kwargs):
result = [set_single_threaded_if_parallel_tbb]
for decorator in self.decorators:
if isinstance(decorator, DecorateInfo):
if decorator.is_active(
test_class, test_name, device, dtype, param_kwargs
):
result.extend(decorator.decorators)
else:
result.append(decorator)
return result
@property
def name(self):
return self.optim_cls.__name__
class optims(_TestParametrizer):
"""Decorator for specifying a list of optimizers over which to run a test."""
def __init__(self, optim_info_iterable, dtypes=None):
self.optim_info_list = list(optim_info_iterable)
# optimizers aren't limited to be one dtype as parameters can have different dtypes
# We default to torch.float32, but dtypes should be specified through passed in
# parameters.
self.dtypes = dtypes if dtypes is not None else [torch.float32]
def _parametrize_test(self, test, generic_cls, device_cls):
if device_cls is None:
raise RuntimeError(
"The @optims decorator is only intended to be used in a device-specific "
"context; use it with instantiate_device_type_tests() instead of "
"instantiate_parametrized_tests()"
)
for optim_info, dtype in itertools.product(self.optim_info_list, self.dtypes):
# Construct the test name; device / dtype parts are handled outside.
# See [Note: device and dtype suffix placement]
test_name = optim_info.name
# Construct parameter kwargs to pass to the test.
param_kwargs = {"optim_info": optim_info, "dtype": dtype}
try:
@functools.wraps(test)
def test_wrapper(*args, **kwargs):
return test(*args, **kwargs)
decorator_fn = functools.partial(
optim_info.get_decorators,
generic_cls.__name__,
test.__name__,
device_cls.device_type,
dtype,
)
yield (test_wrapper, test_name, param_kwargs, decorator_fn)
except Exception as ex:
# Provides an error message for debugging before rethrowing the exception
print(
f"Failed to instantiate {test_name} for module {optim_info.name}!"
)
raise ex
# ------------------------------------------------------------------------------------------
# NOTE: [optimizer kwarg categories]
# We categorize optimizer kwargs as 3 types:
# 1. optimizer-specific flags are like amsgrad or rho or beta, flags that are specific to
# algorithms and thus only show up for certain optimizers. There are many of these, so I
# do not bother gathering them all and listing them here. The converse to these would be
# global flags that every optimizer ideally _should_ support. We break global flags into
# 2 further categories and list them all below.
# 2. global-friendly = ["lr", "weight_decay", "maximize", "capturable"]
# global-friendly flags are global flags who play nicely with all other global flags,
# i.e., are mutually exclusive in function. This means that any pair of the following
# flags can be toggled at once (e.g., maximize and weight_decay). Furthermore, any of the
# following flags theoretically can be enabled with ANY other global flag, including the
# cliquey ones (e.g, capturable and foreach).
# 3. global-cliquey = ["foreach", "fused", "differentiable"]
# global-cliquey flags are global flags that do NOT coexist with other cliquey flags,
# usually because they contradict each other in function. For example, one should not flip
# both foreach AND fused to True, because they are two differing performance optimizations
# in which you can only opt into one.
#
# The following optim_inputs_func_* sampling functions only return constructor combinations of
# optimizer-specific and global-friendly flags. This is because we are confident they would mesh
# well with additional kwargs. On the flip side of the same coin, we reserve setting the
# global-cliquey flags to individual tests and fully expect tests to edit OptimizerInput.kwargs.
def optim_inputs_func_adadelta():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(
params=None, kwargs={"lr": 0.01}, desc="non-default lr"
), # TODO: Move out to testing in param_group?
OptimizerInput(
params=None, kwargs={"weight_decay": 0.9}, desc="nonzero weight_decay"
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "maximize": True},
desc="maximize",
),
OptimizerInput(
params=None, kwargs={"rho": 0.95, "weight_decay": 0.9}, desc="rho"
), # TODO: Move out to testing in param_group?
]
def optim_error_inputs_func_adadelta(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, rho=1.1),
desc="rho should be between 0 and 1",
),
error_type=ValueError,
error_regex="Invalid rho value: 1.1",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
def optim_inputs_func_adagrad():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(
params=None, kwargs={"weight_decay": 0.9}, desc="nonzero weight_decay"
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "maximize": True},
desc="maximize",
),
OptimizerInput(
params=None,
kwargs={"initial_accumulator_value": 0.1, "weight_decay": 0.9},
desc="initial_accumulator_value",
),
OptimizerInput(
params=None,
kwargs={"lr": 0.1, "lr_decay": 0.5, "weight_decay": 0.9},
desc="lr_decay",
), # TODO: Move out to testing in param_group?
]
def optim_error_inputs_func_adagrad(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, lr_decay=-0.5),
desc="lr_decay must be bigger than 0",
),
error_type=ValueError,
error_regex="Invalid lr_decay value: -0.5",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
# TODO: consider tensor LR! See multi_tensor_optimizer_configs in test_optim.py --> tensor LR should work
# with all implementation code paths...
def optim_inputs_func_adam():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(params=None, kwargs={"lr": 0.01}, desc="non-default lr"),
OptimizerInput(params=None, kwargs={"capturable": True}, desc="capturable"),
OptimizerInput(
params=None, kwargs={"weight_decay": 0.9}, desc="nonzero weight_decay"
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "maximize": True},
desc="maximize",
),
OptimizerInput(
params=None, kwargs={"weight_decay": 0.9, "amsgrad": True}, desc="amsgrad"
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "amsgrad": True, "capturable": True},
desc="capturable, amsgrad",
),
OptimizerInput(
params=None,
kwargs={"lr": torch.tensor(0.001), "amsgrad": True, "capturable": True},
desc="Tensor lr with capturable and amsgrad",
),
]
def optim_error_inputs_func_adam(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, betas=(1.0, 0.0)),
desc="beta1 should be between 0 and 1",
),
error_type=ValueError,
error_regex="Invalid beta parameter at index 0: 1.0",
),
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, weight_decay=-1),
desc="weight_decay should > 0",
),
error_type=ValueError,
error_regex="Invalid weight_decay value: -1",
),
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=torch.tensor(0.001), foreach=True),
desc="lr as Tensor doesn't work with foreach & not capturable",
),
error_type=ValueError,
error_regex="lr as a Tensor is not supported for capturable=False and foreach=True",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
def optim_inputs_func_adamax():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(params=None, kwargs={"lr": 0.001}, desc="non-default lr"),
OptimizerInput(
params=None, kwargs={"weight_decay": 0.9}, desc="nonzero weight_decay"
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "maximize": True},
desc="maximize",
),
]
def optim_error_inputs_func_adamax(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, betas=(0.0, 1.0)),
desc="beta2 should be between 0 and 1",
),
error_type=ValueError,
error_regex="Invalid beta parameter at index 1: 1.0",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
def optim_inputs_func_adamw():
return optim_inputs_func_adam()
def optim_error_inputs_func_adamw(device, dtype):
return optim_error_inputs_func_adam(device, dtype)
def optim_inputs_func_asgd():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(params=None, kwargs={"lr": 0.02}, desc="non-default lr"),
OptimizerInput(params=None, kwargs={"t0": 100}, desc="t0"),
OptimizerInput(
params=None, kwargs={"weight_decay": 0.9}, desc="nonzero weight_decay"
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "maximize": True},
desc="maximize",
),
]
def optim_error_inputs_func_asgd(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, weight_decay=-0.5),
desc="weight_decay should > 0",
),
error_type=ValueError,
error_regex="Invalid weight_decay value: -0.5",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
def optim_inputs_func_lbfgs():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(params=None, kwargs={"lr": 0.01}, desc="non-default lr"),
OptimizerInput(
params=None, kwargs={"tolerance_grad": math.inf}, desc="tolerance_grad"
),
OptimizerInput(
params=None,
kwargs={"line_search_fn": "strong_wolfe"},
desc="strong_wolfe",
),
]
def optim_error_inputs_func_lbfgs(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
# Weird story bro, NAdam and RAdam do not have maximize.
def optim_inputs_func_nadam():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(params=None, kwargs={"lr": 1e-3}, desc="non-default lr"),
OptimizerInput(
params=None,
kwargs={"momentum_decay": 6e-3},
desc="non-zero momentum_decay",
),
OptimizerInput(params=None, kwargs={"capturable": True}, desc="capturable"),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "momentum_decay": 6e-3},
desc="weight_decay",
),
OptimizerInput(
params=None,
kwargs={
"weight_decay": 0.9,
"momentum_decay": 6e-3,
"decoupled_weight_decay": True,
},
desc="decoupled_weight_decay",
),
]
def optim_error_inputs_func_nadam(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, betas=(1.0, 0.0)),
desc="beta1 should be between 0 and 1",
),
error_type=ValueError,
error_regex="Invalid beta parameter at index 0: 1.0",
),
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, momentum_decay=-0.2),
desc="momentum_decay should > 0",
),
error_type=ValueError,
error_regex="Invalid momentum_decay value: -0.2",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
# Weird story bro, NAdam and RAdam do not have maximize.
def optim_inputs_func_radam():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(params=None, kwargs={"lr": 2e-3}, desc="non-default lr"),
OptimizerInput(params=None, kwargs={"eps": 1e-6}, desc="non-default eps"),
OptimizerInput(
params=None, kwargs={"weight_decay": 0.9}, desc="nonzero weight_decay"
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "decoupled_weight_decay": True},
desc="decoupled_weight_decay",
),
]
def optim_error_inputs_func_radam(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, betas=(1.0, 0.0)),
desc="beta1 should be between 0 and 1",
),
error_type=ValueError,
error_regex="Invalid beta parameter at index 0: 1.0",
),
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, weight_decay=-1),
desc="weight_decay should > 0",
),
error_type=ValueError,
error_regex="Invalid weight_decay value: -1",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
def optim_inputs_func_rmsprop():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(params=None, kwargs={"lr": 1e-3}, desc="non-default lr"),
OptimizerInput(
params=None, kwargs={"weight_decay": 0.9}, desc="nonzero weight_decay"
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "centered": True},
desc="centered",
),
OptimizerInput(
params=None,
kwargs={"weight_decay": 0.9, "centered": True, "momentum": 0.1},
desc="momentum",
),
OptimizerInput(
params=None,
kwargs={
"weight_decay": 0.9,
"centered": True,
"momentum": 0.1,
"maximize": True,
},
desc="maximize",
),
]
def optim_error_inputs_func_rmsprop(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, momentum=-1.0),
desc="momentum should be between 0 and 1",
),
error_type=ValueError,
error_regex="Invalid momentum value: -1.0",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
def optim_inputs_func_rprop():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(params=None, kwargs={"lr": 2e-4}, desc="non-default lr"),
OptimizerInput(
params=None, kwargs={"etas": (0.5, 1.5)}, desc="non-default etas"
),
OptimizerInput(
params=None,
kwargs={"step_sizes": (2e-6, 100)},
desc="non-default step_sizes",
),
OptimizerInput(params=None, kwargs={"maximize": True}, desc="maximize"),
]
def optim_error_inputs_func_rprop(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, etas=(1.0, 0.5)),
desc="0 < eta1 < 1 < eta2",
),
error_type=ValueError,
error_regex="Invalid eta values: 1.0, 0.5",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
def optim_inputs_func_sgd():
return [
OptimizerInput(params=None, kwargs={"lr": 1e-2}, desc="default"),
OptimizerInput(
params=None, kwargs={"lr": 1e-2, "momentum": 0.9}, desc="momentum"
),
OptimizerInput(
params=None,
kwargs={"lr": 1e-2, "momentum": 0.9, "dampening": 0.5},
desc="dampening",
),
OptimizerInput(
params=None,
kwargs={"lr": 1e-2, "momentum": 0.9, "weight_decay": 0.9},
desc="non-zero weight_decay",
),
OptimizerInput(
params=None,
kwargs={"lr": 1e-2, "momentum": 0.9, "nesterov": True, "weight_decay": 0.9},
desc="nesterov",
),
OptimizerInput(
params=None,
kwargs={"lr": 1e-2, "weight_decay": 0.9, "maximize": True},
desc="maximize",
),
]
def optim_error_inputs_func_sgd(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, momentum=-0.5),
desc="momentum should be between 0 and 1",
),
error_type=ValueError,
error_regex="Invalid momentum value: -0.5",
),
ErrorOptimizerInput(
OptimizerInput(
params=Parameter(torch.randn(1, device=device, dtype=dtype)),
kwargs={},
desc="invalid param type",
),
error_type=TypeError,
error_regex="params argument given to the optimizer should be an iterable of Tensors or dicts",
),
]
def optim_inputs_func_sparseadam():
return [
OptimizerInput(params=None, kwargs={}, desc="default"),
OptimizerInput(
params=None, kwargs={"lr": 0.01}, desc="non-default lr"
), # TODO: Move out to testing in param_group?
OptimizerInput(params=None, kwargs={"maximize": True}, desc="maximize"),
]
def optim_error_inputs_func_sparseadam(device, dtype):
return [
ErrorOptimizerInput(
OptimizerInput(
params=None,
kwargs=dict(lr=1e-2, betas=(1.0, 0.0)),
desc="beta1 should be between 0 and 1",
),
error_type=ValueError,
error_regex="Invalid beta parameter at index 0: 1.0",
),
ErrorOptimizerInput(
OptimizerInput(
params=[
torch.zeros(3, layout=torch.sparse_coo, device=device, dtype=dtype)
],
kwargs={},
desc="dense params required",
),
error_type=ValueError,
error_regex="SparseAdam requires dense parameter tensors",
),
ErrorOptimizerInput(
OptimizerInput(
params=[
{
"params": [
torch.zeros(
3, layout=torch.sparse_coo, device=device, dtype=dtype
)
]
}
],
kwargs={},
desc="dense params required in param_groups",
),
error_type=ValueError,
error_regex="SparseAdam requires dense parameter tensors",
),
]
# Database of OptimizerInfo entries in alphabetical order.
optim_db: List[OptimizerInfo] = [
OptimizerInfo(
Adadelta,
optim_inputs_func=optim_inputs_func_adadelta,
optim_error_inputs_func=optim_error_inputs_func_adadelta,
supported_impls=("foreach", "differentiable"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115679"
),
"TestOptimRenewed",
"test_foreach_matches_forloop",
),
DecorateInfo(
skipIfTorchDynamo(
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115679 and #116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
),
),
OptimizerInfo(
Adagrad,
optim_inputs_func=optim_inputs_func_adagrad,
optim_error_inputs_func=optim_error_inputs_func_adagrad,
supported_impls=("foreach", "differentiable"),
supports_sparse_on=("cpu"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115607"
),
"TestOptimRenewed",
"test_foreach_matches_forloop",
),
DecorateInfo(
skipIfTorchDynamo(
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115607 and #116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
),
),
OptimizerInfo(
Adam,
optim_inputs_func=optim_inputs_func_adam,
optim_error_inputs_func=optim_error_inputs_func_adam,
supported_impls=("foreach", "differentiable", "fused"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"Fixing #115607 should fix this test. fused is correct, but forloop is not."
),
"TestOptimRenewed",
"test_fused_matches_forloop",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
),
),
OptimizerInfo(
Adamax,
optim_inputs_func=optim_inputs_func_adamax,
optim_error_inputs_func=optim_error_inputs_func_adamax,
supported_impls=("foreach", "differentiable"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115607"
),
"TestOptimRenewed",
"test_foreach_matches_forloop",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115607 and #116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
),
),
OptimizerInfo(
AdamW,
optim_inputs_func=optim_inputs_func_adamw,
optim_error_inputs_func=optim_error_inputs_func_adamw,
supported_impls=("foreach", "differentiable", "fused"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"Fixing #115607 should fix this test. fused is correct, but forloop is not."
),
"TestOptimRenewed",
"test_fused_matches_forloop",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
),
),
OptimizerInfo(
ASGD,
optim_inputs_func=optim_inputs_func_asgd,
optim_error_inputs_func=optim_error_inputs_func_asgd,
supported_impls=("foreach", "differentiable"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"See discrepancy in https://github.com/pytorch/pytorch/issues/115607"
),
"TestOptimRenewed",
"test_foreach_matches_forloop",
),
DecorateInfo(
skipIfTorchDynamo(
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
),
),
OptimizerInfo(
LBFGS,
optim_inputs_func=optim_inputs_func_lbfgs,
optim_error_inputs_func=optim_error_inputs_func_lbfgs,
supported_impls=(),
step_requires_closure=True,
supports_param_groups=False,
supports_multiple_devices=False,
),
OptimizerInfo(
NAdam,
optim_inputs_func=optim_inputs_func_nadam,
optim_error_inputs_func=optim_error_inputs_func_nadam,
supported_impls=("foreach", "differentiable"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
),
),
OptimizerInfo(
RAdam,
optim_inputs_func=optim_inputs_func_radam,
optim_error_inputs_func=optim_error_inputs_func_radam,
supported_impls=("foreach", "differentiable"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
),
),
OptimizerInfo(
RMSprop,
optim_inputs_func=optim_inputs_func_rmsprop,
optim_error_inputs_func=optim_error_inputs_func_rmsprop,
supported_impls=("foreach", "differentiable"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115679"
),
"TestOptimRenewed",
"test_foreach_matches_forloop",
),
DecorateInfo(
skipIfTorchDynamo(
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115679 and #116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
),
),
OptimizerInfo(
Rprop,
optim_inputs_func=optim_inputs_func_rprop,
optim_error_inputs_func=optim_error_inputs_func_rprop,
supported_impls=("foreach", "differentiable"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115679"
),
"TestOptimRenewed",
"test_foreach_matches_forloop",
),
DecorateInfo(
skipIfTorchDynamo(
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"See https://github.com/pytorch/pytorch/issues/115679 and #116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
),
),
OptimizerInfo(
SGD,
optim_inputs_func=optim_inputs_func_sgd,
optim_error_inputs_func=optim_error_inputs_func_sgd,
supported_impls=("foreach", "differentiable"),
supports_sparse_on=("cpu", "cuda"),
skips=(
DecorateInfo(
skipIfTorchDynamo(
"Dynamo memory usage is flaky, see https://github.com/pytorch/pytorch/issues/116046"
),
"TestOptimRenewed",
"test_peak_memory_foreach",
),
DecorateInfo(
skipIfTorchDynamo(
"Errors w/ Global state changed, see https://github.com/pytorch/pytorch/issues/116028"
),
"TestOptimRenewed",
"test_set_default_dtype_works_with_foreach",
),
),
),
OptimizerInfo(
SparseAdam,
optim_inputs_func=optim_inputs_func_sparseadam,
optim_error_inputs_func=optim_error_inputs_func_sparseadam,
supported_impls=(),
only_supports_sparse_grads=True,
),
]