mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/69335 This PR added support for configuring fusion with: "pattern", "fuser_method" This only works for simple sequence of 2 op patterns currently, will extend this in future PRs Test Plan: regresion test on linear-relu fusion: ``` python test/fx2trt/test_quant_trt.py TestQuantizeFxTRTOps ``` Imported from OSS Reviewed By: vkuzo Differential Revision: D32816164 fbshipit-source-id: f300b7b96b36908cb94a50a8a17e0e15032509eb
174 lines
6.8 KiB
Python
174 lines
6.8 KiB
Python
import torch.nn as nn
|
|
import torch.nn.intrinsic as nni
|
|
|
|
from typing import Union, Callable, Tuple, Dict, Optional, Type
|
|
from torch.ao.quantization.utils import Pattern
|
|
|
|
from torch.ao.quantization.utils import get_combined_dict
|
|
|
|
|
|
def fuse_conv_bn(conv, bn):
|
|
r"""Given the conv and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
conv: Module instance of type conv2d/conv3d
|
|
bn: Spatial BN instance that needs to be fused with the conv
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Conv2d(10, 20, 3)
|
|
>>> b1 = nn.BatchNorm2d(20)
|
|
>>> m2 = fuse_conv_bn(m1, b1)
|
|
"""
|
|
assert(conv.training == bn.training),\
|
|
"Conv and BN both must be in the same mode (train or eval)."
|
|
|
|
fused_module_class_map = {
|
|
nn.Conv1d: nni.ConvBn1d,
|
|
nn.Conv2d: nni.ConvBn2d,
|
|
nn.Conv3d: nni.ConvBn3d,
|
|
}
|
|
|
|
if conv.training:
|
|
assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
|
|
assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True'
|
|
assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True'
|
|
fused_module_class = fused_module_class_map.get((type(conv)), None)
|
|
if fused_module_class is not None:
|
|
return fused_module_class(conv, bn)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn)))
|
|
else:
|
|
return nn.utils.fuse_conv_bn_eval(conv, bn)
|
|
|
|
def fuse_conv_bn_relu(conv, bn, relu):
|
|
r"""Given the conv and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
conv: Module instance of type conv2d/conv3d
|
|
bn: Spatial BN instance that needs to be fused with the conv
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Conv2d(10, 20, 3)
|
|
>>> b1 = nn.BatchNorm2d(20)
|
|
>>> r1 = nn.ReLU(inplace=False)
|
|
>>> m2 = fuse_conv_bn_relu(m1, b1, r1)
|
|
"""
|
|
assert(conv.training == bn.training == relu.training),\
|
|
"Conv and BN both must be in the same mode (train or eval)."
|
|
fused_module : Optional[Type[nn.Sequential]] = None
|
|
if conv.training:
|
|
map_to_fused_module_train = {
|
|
nn.Conv1d: nni.ConvBnReLU1d,
|
|
nn.Conv2d: nni.ConvBnReLU2d,
|
|
nn.Conv3d: nni.ConvBnReLU3d,
|
|
}
|
|
assert bn.num_features == conv.out_channels, 'Output channel of Conv must match num_features of BatchNorm'
|
|
assert bn.affine, 'Only support fusing BatchNorm with affine set to True'
|
|
assert bn.track_running_stats, 'Only support fusing BatchNorm with tracking_running_stats set to True'
|
|
fused_module = map_to_fused_module_train.get(type(conv), None)
|
|
if fused_module is not None:
|
|
return fused_module(conv, bn, relu)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn, relu)))
|
|
else:
|
|
map_to_fused_module_eval = {
|
|
nn.Conv1d: nni.ConvReLU1d,
|
|
nn.Conv2d: nni.ConvReLU2d,
|
|
nn.Conv3d: nni.ConvReLU3d,
|
|
}
|
|
fused_module = map_to_fused_module_eval.get(type(conv), None)
|
|
if fused_module is not None:
|
|
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
|
|
return fused_module(fused_conv, relu)
|
|
else:
|
|
raise NotImplementedError("Cannot fuse eval modules: {}".format((conv, bn, relu)))
|
|
|
|
def fuse_linear_bn(linear, bn):
|
|
r"""Given the linear and bn modules, fuses them and returns the fused module
|
|
|
|
Args:
|
|
linear: Module instance of type Linear
|
|
bn: BatchNorm1d instance that needs to be fused with the linear layer
|
|
|
|
Examples::
|
|
|
|
>>> m1 = nn.Linear(20, 10)
|
|
>>> b1 = nn.BatchNorm1d(10)
|
|
>>> m2 = fuse_linear_bn(m1, b1)
|
|
"""
|
|
assert(linear.training == bn.training),\
|
|
"Linear and BN both must be in the same mode (train or eval)."
|
|
|
|
if linear.training:
|
|
raise Exception("Fusing Linear+BatchNorm not yet supported in training.")
|
|
else:
|
|
return nn.utils.fusion.fuse_linear_bn_eval(linear, bn)
|
|
|
|
DEFAULT_OP_LIST_TO_FUSER_METHOD: Dict[Tuple, Union[nn.Sequential, Callable]] = {
|
|
(nn.Conv1d, nn.BatchNorm1d): fuse_conv_bn,
|
|
(nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn,
|
|
(nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv3d, nn.BatchNorm3d): fuse_conv_bn,
|
|
(nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu,
|
|
(nn.Conv1d, nn.ReLU): nni.ConvReLU1d,
|
|
(nn.Conv2d, nn.ReLU): nni.ConvReLU2d,
|
|
(nn.Conv3d, nn.ReLU): nni.ConvReLU3d,
|
|
(nn.Linear, nn.BatchNorm1d): fuse_linear_bn,
|
|
(nn.Linear, nn.ReLU): nni.LinearReLU,
|
|
(nn.BatchNorm2d, nn.ReLU): nni.BNReLU2d,
|
|
(nn.BatchNorm3d, nn.ReLU): nni.BNReLU3d,
|
|
}
|
|
|
|
def get_fuser_method(op_list, additional_fuser_method_mapping=None):
|
|
''' Get fuser method for the given list of module types,
|
|
return None if fuser method does not exist
|
|
'''
|
|
if additional_fuser_method_mapping is None:
|
|
additional_fuser_method_mapping = dict()
|
|
all_mappings = get_combined_dict(DEFAULT_OP_LIST_TO_FUSER_METHOD,
|
|
additional_fuser_method_mapping)
|
|
fuser_method = all_mappings.get(op_list, None)
|
|
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_list)
|
|
return fuser_method
|
|
|
|
def reverse2(f):
|
|
return lambda x, y: f(y, x)
|
|
|
|
def reverse3(f):
|
|
def reversed(x, w):
|
|
y, z = w
|
|
return f(z, y, x)
|
|
return reversed
|
|
|
|
DEFAULT_PATTERN_TO_FUSER_METHOD: Dict[Pattern, Union[nn.Sequential, Callable]] = {
|
|
(nn.BatchNorm1d, nn.Conv1d): reverse2(fuse_conv_bn),
|
|
(nn.ReLU, (nn.BatchNorm1d, nn.Conv1d)): reverse3(fuse_conv_bn_relu),
|
|
(nn.BatchNorm2d, nn.Conv2d): reverse2(fuse_conv_bn),
|
|
(nn.ReLU, (nn.BatchNorm2d, nn.Conv2d)): reverse3(fuse_conv_bn_relu),
|
|
(nn.BatchNorm3d, nn.Conv2d): reverse2(fuse_conv_bn),
|
|
(nn.ReLU, (nn.BatchNorm3d, nn.Conv3d)): reverse3(fuse_conv_bn_relu),
|
|
(nn.ReLU, nn.Conv1d): reverse2(nni.ConvReLU1d),
|
|
(nn.ReLU, nn.Conv2d): reverse2(nni.ConvReLU2d),
|
|
(nn.ReLU, nn.Conv3d): reverse2(nni.ConvReLU3d),
|
|
(nn.BatchNorm1d, nn.Linear): reverse2(fuse_linear_bn),
|
|
(nn.ReLU, nn.Linear): reverse2(nni.LinearReLU),
|
|
(nn.ReLU, nn.BatchNorm2d): reverse2(nni.BNReLU2d),
|
|
(nn.ReLU, nn.BatchNorm3d): reverse2(nni.BNReLU3d),
|
|
}
|
|
|
|
def get_fuser_method_new(
|
|
op_pattern: Pattern,
|
|
fuser_method_mapping: Optional[Dict[Pattern, Union[nn.Sequential, Callable]]] = None):
|
|
""" This will be made defult after we deparate the get_fuser_method
|
|
Would like to implement this first and have a separate PR for deprecation
|
|
"""
|
|
if fuser_method_mapping is None:
|
|
fuser_method_mapping = DEFAULT_PATTERN_TO_FUSER_METHOD
|
|
|
|
fuser_method = fuser_method_mapping.get(op_pattern, None)
|
|
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_pattern)
|
|
return fuser_method
|