mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Support shape propagation with control-flow * This allows us to enable optimization in the GraphExecutor for most script tests. * Changes Type to always be present (non-null) on a Value, removing `hasType()` and `typeOption()`. A new type kind 'DynamicType' now represents when a specific type has not been determined. * If/Loop nodes propagate shapes/types in the simple cases where types of outputs do not change depending on where control flows. In other cases, we propagate DynamicType to indicate we do not know what the shape will be. * Remove the `cond` input to the body of Loop to simplify handling in interpreter and shape propagation. * Bugfix for zero-dim contiguousStridesOf
246 lines
6.8 KiB
C++
246 lines
6.8 KiB
C++
#include <Python.h>
|
|
|
|
#include "torch/csrc/jit/ir.h"
|
|
#include "torch/csrc/jit/pybind.h"
|
|
#include "torch/csrc/jit/python_tracer.h"
|
|
#include "torch/csrc/utils/pybind.h"
|
|
|
|
#include <iostream>
|
|
#include <sstream>
|
|
|
|
namespace torch { namespace jit {
|
|
|
|
void initPythonIRBindings(PyObject * module_) {
|
|
auto m = py::handle(module_).cast<py::module>();
|
|
#define GS(name) \
|
|
def(#name,&Graph :: name)
|
|
py::class_<Graph,std::shared_ptr<Graph>>(m,"Graph")
|
|
.def(py::init<>())
|
|
.def("__repr__",[](Graph & g) {
|
|
std::stringstream ss;
|
|
ss << g;
|
|
return ss.str();
|
|
})
|
|
.def("inputs",[](Graph &g) {
|
|
return py::make_iterator(g.inputs().begin(), g.inputs().end());
|
|
})
|
|
.def("outputs",[](Graph &g) {
|
|
return py::make_iterator(g.outputs().begin(), g.outputs().end());
|
|
})
|
|
// TODO: Iterator invalidation might make this hazardous
|
|
.def("nodes",[](Graph &g) {
|
|
return py::make_iterator(g.nodes().begin(), g.nodes().end());
|
|
})
|
|
.def("addInput",[](Graph &g) { return g.addInput(); })
|
|
.GS(advanceStage)
|
|
.GS(stage)
|
|
.GS(eraseInput)
|
|
.GS(registerOutput)
|
|
.def("create",[](Graph & g, const char * str) {
|
|
return g.create(Symbol(str));
|
|
})
|
|
.def("create",[](Graph & g, const char * str, size_t noutputs) {
|
|
return g.create(Symbol(str), noutputs);
|
|
})
|
|
.def("create",[](Graph & g, const char * str, const std::vector<Value*> & inputs) {
|
|
return g.create(Symbol(str),inputs);
|
|
})
|
|
.def("create",[](Graph & g, const char * str, const std::vector<Value*> & inputs, size_t noutputs) {
|
|
return g.create(Symbol(str),inputs, noutputs);
|
|
})
|
|
.GS(createConstant)
|
|
.GS(createFusionGroup)
|
|
.def("createClone",[](Graph & g, Node * n, py::object fn) {
|
|
return g.createClone(n, [&](Value * e) {
|
|
return fn(e).cast<Value*>();
|
|
});
|
|
})
|
|
.GS(appendNode)
|
|
.GS(prependNode)
|
|
.GS(lint)
|
|
;
|
|
#undef GS
|
|
|
|
#define VS(name) \
|
|
def(#name,&Value :: name)
|
|
py::class_<Value,std::unique_ptr<Value, py::nodelete>>(m,"Value")
|
|
.def("__repr__",[](Value & n) {
|
|
std::stringstream ss;
|
|
ss << n.uniqueName() << " defined in (" << *n.node() << ")";
|
|
return ss.str();
|
|
})
|
|
.VS(type)
|
|
.VS(setType)
|
|
.VS(inferTypeFrom)
|
|
// skip owningGraph because it returns a raw pointer to a otherwise
|
|
// std::shared_ptr stored graph object, and would cause a double free
|
|
.VS(unique)
|
|
.VS(uniqueName)
|
|
.VS(setUniqueName)
|
|
.VS(setStage)
|
|
.VS(stage)
|
|
.VS(offset)
|
|
.VS(uses)
|
|
.VS(isHandle)
|
|
.VS(replaceAllUsesWith)
|
|
.def("node",[](Value &v) { return v.node(); })
|
|
.def("setTypeAs", [](Value * node, Value * other) {
|
|
node->setType(other->type());
|
|
return node;
|
|
})
|
|
.VS(copyMetadata)
|
|
;
|
|
|
|
#undef VS
|
|
|
|
#define NS(name) \
|
|
def(#name,&Node :: name)
|
|
py::class_<Node,std::unique_ptr<Node, py::nodelete>>(m,"Node")
|
|
.def("__repr__",[](Node & n) {
|
|
std::stringstream ss;
|
|
ss << n;
|
|
return ss.str();
|
|
})
|
|
.def("hasMultipleOutputs",[](Node&n) {
|
|
return n.outputs().size() > 1;
|
|
})
|
|
.def("outputsSize",[](Node &n) {
|
|
return n.outputs().size();
|
|
})
|
|
.NS(kind)
|
|
.NS(stage)
|
|
.NS(setStage)
|
|
.def("inputs",[](Node &n) {
|
|
return py::make_iterator(n.inputs().begin(), n.inputs().end());
|
|
})
|
|
.def("outputs",[](Node &n) {
|
|
return py::make_iterator(n.outputs().begin(), n.outputs().end());
|
|
})
|
|
.NS(output)
|
|
.NS(addInput)
|
|
.NS(replaceInput)
|
|
.NS(replaceInputWith)
|
|
.NS(replaceAllUsesWith)
|
|
.NS(insertBefore)
|
|
.NS(insertAfter)
|
|
.NS(moveAfter)
|
|
.NS(moveBefore)
|
|
.NS(removeInput)
|
|
.NS(removeAllInputs)
|
|
.NS(destroy)
|
|
.NS(hasUses)
|
|
.NS(eraseOutput)
|
|
.NS(addOutput)
|
|
.NS(scopeName)
|
|
|
|
#define AS(name) def(#name,&Attributes<Node> :: name)
|
|
// methods from Attributes
|
|
.AS(copyAttributes)
|
|
.AS(hasAttribute)
|
|
.AS(kindOf)
|
|
.AS(removeAttribute)
|
|
.AS(hasAttributes)
|
|
.AS(attributeNames)
|
|
#undef AS
|
|
#define CREATE_ACCESSOR(Kind,method) \
|
|
def(#method "_",[](Node & n, const char * name, Kind##Attr::ValueType v) { \
|
|
return n . method ## _(Symbol(name), std::move(v)); \
|
|
}) \
|
|
.def(#method, [](Node & n, const char * name) { \
|
|
return n.method(Symbol(name)); \
|
|
})
|
|
.CREATE_ACCESSOR(Float,f)
|
|
.CREATE_ACCESSOR(Floats,fs)
|
|
.CREATE_ACCESSOR(String,s)
|
|
.CREATE_ACCESSOR(Strings,ss)
|
|
.CREATE_ACCESSOR(Int,i)
|
|
.CREATE_ACCESSOR(Ints,is)
|
|
.CREATE_ACCESSOR(Tensor,t)
|
|
.CREATE_ACCESSOR(Tensors,ts)
|
|
.CREATE_ACCESSOR(Graph,g)
|
|
.CREATE_ACCESSOR(Graphs,gs)
|
|
#undef CREATE_ACCESSOR
|
|
.def("z_",[](Node & n, const char * name, at::Tensor v) {
|
|
return n.t_(Symbol(name), std::move(v.view({})));
|
|
})
|
|
.def("z",[](Node & n, const char * name) {
|
|
return n.t(Symbol(name));
|
|
})
|
|
.def("zs_",[](Node & n, const char * name, TensorsAttr::ValueType v) {
|
|
for (size_t i = 0; i < v.size(); ++ i) {
|
|
v[i] = v[i].view({});
|
|
}
|
|
return n.ts_(Symbol(name), std::move(v));
|
|
})
|
|
.def("zs",[](Node & n, const char * name) {
|
|
return n.ts(Symbol(name));
|
|
})
|
|
.def("pyobj",[](Node & n) {
|
|
return py::handle(n.expect<PythonOp>()->pyobj.get()).cast<py::object>();
|
|
})
|
|
.def("cconv",[](Node & n) {
|
|
return n.expect<PythonOp>()->cconv;
|
|
})
|
|
.def("pyname",[](Node & n) {
|
|
return n.expect<PythonOp>()->name();
|
|
})
|
|
.def("scalar_args",[](Node & n) {
|
|
auto op = n.expect<PythonOp>();
|
|
auto scalars = py::list();
|
|
auto append = scalars.attr("append");
|
|
for(auto & arg : op->scalar_args) {
|
|
append(py::handle(arg.get()));
|
|
}
|
|
return scalars;
|
|
})
|
|
;
|
|
|
|
#define TS(name) \
|
|
def(#name,&Node :: name)
|
|
py::class_<Type,std::shared_ptr<Type>>(m,"Type")
|
|
.def("__repr__",[](Type & t) {
|
|
std::stringstream ss;
|
|
ss << t;
|
|
return ss.str();
|
|
})
|
|
.def("kind",[](Type& t_) {
|
|
Type * t = &t_;
|
|
switch(t->kind()) {
|
|
case TypeKind::HandleType:
|
|
return "HandleType";
|
|
case TypeKind::DynamicType:
|
|
return "DynamicType";
|
|
case TypeKind::TensorType:
|
|
return "TensorType";
|
|
default:
|
|
torch::barf("unknown type kind");
|
|
return "";
|
|
}
|
|
})
|
|
.def("sizes",[](Type& t) {
|
|
return t.expect<TensorType>()->sizes();
|
|
})
|
|
.def("strides",[](Type& t) {
|
|
return t.expect<TensorType>()->strides();
|
|
})
|
|
.def("contiguous",[](Type& t) {
|
|
return t.expect<TensorType>()->contiguous();
|
|
})
|
|
.def("scalarType",[](Type& t) {
|
|
return at::toString(t.expect<TensorType>()->scalarType());
|
|
})
|
|
;
|
|
|
|
py::class_<Use>(m,"Use")
|
|
.def_readonly("user",&Use::user)
|
|
.def_readonly("offset",&Use::offset);
|
|
|
|
m.def("_jit_get_graph", [](tracer::TracingState* s) {
|
|
return s->graph;
|
|
});
|
|
m.def("_jit_is_tracing", [](const autograd::Variable& var) {
|
|
return tracer::isTracing(var);
|
|
});
|
|
}
|
|
}}
|