mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-08 07:39:33 +01:00
* Remove remaining TensorTypeUtils functions. Mostly what's remaining is copy utilities -- these are now provided in THCTensorCopy.hpp and templatized on the ScalarType rather than the TensorType. * Have a single THTensor / THCTensor type. As was previously done with Storages, have only a single (dtype-independent) THTensor / THCTensor. For documentation and backwards compatibility purposes, the old names, e.g. TH(Cuda)LongTensor alias the new TH(C)Tensor type. * undef GENERATE_SPARSE.
44 lines
1.2 KiB
C++
44 lines
1.2 KiB
C++
#include "torch/csrc/python_headers.h"
|
|
#include <stdarg.h>
|
|
#include <string>
|
|
#include "THCP.h"
|
|
|
|
#include "override_macros.h"
|
|
|
|
#define THC_GENERIC_FILE "torch/csrc/generic/utils.cpp"
|
|
#include <THC/THCGenerateAllTypes.h>
|
|
|
|
#ifdef WITH_CUDA
|
|
std::vector <THCStream*> THPUtils_PySequence_to_THCStreamList(PyObject *obj) {
|
|
if (!PySequence_Check(obj)) {
|
|
throw std::runtime_error("Expected a sequence in THPUtils_PySequence_to_THCStreamList");
|
|
}
|
|
THPObjectPtr seq = THPObjectPtr(PySequence_Fast(obj, NULL));
|
|
if (seq.get() == NULL) {
|
|
throw std::runtime_error("expected PySequence, but got " + std::string(THPUtils_typename(obj)));
|
|
}
|
|
|
|
std::vector<THCStream*> streams;
|
|
Py_ssize_t length = PySequence_Fast_GET_SIZE(seq.get());
|
|
for (Py_ssize_t i = 0; i < length; i++) {
|
|
PyObject *stream = PySequence_Fast_GET_ITEM(seq.get(), i);
|
|
|
|
if (PyObject_IsInstance(stream, THCPStreamClass)) {
|
|
streams.push_back( ((THCPStream *)stream)->cdata);
|
|
} else if (stream == Py_None) {
|
|
streams.push_back(NULL);
|
|
} else {
|
|
std::runtime_error("Unknown data type found in stream list. Need THCStream or None");
|
|
}
|
|
}
|
|
return streams;
|
|
}
|
|
|
|
template<>
|
|
void THPPointer<THCTensor>::free() {
|
|
if (ptr)
|
|
THCTensor_free(LIBRARY_STATE ptr);
|
|
}
|
|
|
|
#endif
|