mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
432 lines
16 KiB
Python
432 lines
16 KiB
Python
import random
|
|
import torch
|
|
import torch.multiprocessing as multiprocessing
|
|
from torch._C import _set_worker_signal_handlers, _update_worker_pids, \
|
|
_remove_worker_pids, _error_if_any_worker_fails
|
|
from .sampler import SequentialSampler, RandomSampler, BatchSampler
|
|
import signal
|
|
import functools
|
|
import collections
|
|
import re
|
|
import sys
|
|
import threading
|
|
import traceback
|
|
from torch._six import string_classes, int_classes
|
|
|
|
if sys.version_info[0] == 2:
|
|
import Queue as queue
|
|
else:
|
|
import queue
|
|
|
|
|
|
class ExceptionWrapper(object):
|
|
r"""Wraps an exception plus traceback to communicate across threads"""
|
|
|
|
def __init__(self, exc_info):
|
|
self.exc_type = exc_info[0]
|
|
self.exc_msg = "".join(traceback.format_exception(*exc_info))
|
|
|
|
|
|
_use_shared_memory = False
|
|
r"""Whether to use shared memory in default_collate"""
|
|
|
|
|
|
def _worker_loop(dataset, index_queue, data_queue, collate_fn, seed, init_fn, worker_id):
|
|
global _use_shared_memory
|
|
_use_shared_memory = True
|
|
|
|
# Intialize C side signal handlers for SIGBUS and SIGSEGV. Python signal
|
|
# module's handlers are executed after Python returns from C low-level
|
|
# handlers, likely when the same fatal signal happened again already.
|
|
# https://docs.python.org/3/library/signal.html Sec. 18.8.1.1
|
|
_set_worker_signal_handlers()
|
|
|
|
torch.set_num_threads(1)
|
|
random.seed(seed)
|
|
torch.manual_seed(seed)
|
|
|
|
if init_fn is not None:
|
|
init_fn(worker_id)
|
|
|
|
while True:
|
|
r = index_queue.get()
|
|
if r is None:
|
|
break
|
|
idx, batch_indices = r
|
|
try:
|
|
samples = collate_fn([dataset[i] for i in batch_indices])
|
|
except Exception:
|
|
data_queue.put((idx, ExceptionWrapper(sys.exc_info())))
|
|
else:
|
|
data_queue.put((idx, samples))
|
|
|
|
|
|
def _worker_manager_loop(in_queue, out_queue, done_event, pin_memory, device_id):
|
|
if pin_memory:
|
|
torch.cuda.set_device(device_id)
|
|
|
|
while True:
|
|
try:
|
|
r = in_queue.get()
|
|
except Exception:
|
|
if done_event.is_set():
|
|
return
|
|
raise
|
|
if r is None:
|
|
break
|
|
if isinstance(r[1], ExceptionWrapper):
|
|
out_queue.put(r)
|
|
continue
|
|
idx, batch = r
|
|
try:
|
|
if pin_memory:
|
|
batch = pin_memory_batch(batch)
|
|
except Exception:
|
|
out_queue.put((idx, ExceptionWrapper(sys.exc_info())))
|
|
else:
|
|
out_queue.put((idx, batch))
|
|
|
|
numpy_type_map = {
|
|
'float64': torch.DoubleTensor,
|
|
'float32': torch.FloatTensor,
|
|
'float16': torch.HalfTensor,
|
|
'int64': torch.LongTensor,
|
|
'int32': torch.IntTensor,
|
|
'int16': torch.ShortTensor,
|
|
'int8': torch.CharTensor,
|
|
'uint8': torch.ByteTensor,
|
|
}
|
|
|
|
|
|
def default_collate(batch):
|
|
r"""Puts each data field into a tensor with outer dimension batch size"""
|
|
|
|
error_msg = "batch must contain tensors, numbers, dicts or lists; found {}"
|
|
elem_type = type(batch[0])
|
|
if torch.is_tensor(batch[0]):
|
|
out = None
|
|
if _use_shared_memory:
|
|
# If we're in a background process, concatenate directly into a
|
|
# shared memory tensor to avoid an extra copy
|
|
numel = sum([x.numel() for x in batch])
|
|
storage = batch[0].storage()._new_shared(numel)
|
|
out = batch[0].new(storage)
|
|
return torch.stack(batch, 0, out=out)
|
|
elif elem_type.__module__ == 'numpy' and elem_type.__name__ != 'str_' \
|
|
and elem_type.__name__ != 'string_':
|
|
elem = batch[0]
|
|
if elem_type.__name__ == 'ndarray':
|
|
# array of string classes and object
|
|
if re.search('[SaUO]', elem.dtype.str) is not None:
|
|
raise TypeError(error_msg.format(elem.dtype))
|
|
|
|
return torch.stack([torch.from_numpy(b) for b in batch], 0)
|
|
if elem.shape == (): # scalars
|
|
py_type = float if elem.dtype.name.startswith('float') else int
|
|
return numpy_type_map[elem.dtype.name](list(map(py_type, batch)))
|
|
elif isinstance(batch[0], int_classes):
|
|
return torch.LongTensor(batch)
|
|
elif isinstance(batch[0], float):
|
|
return torch.DoubleTensor(batch)
|
|
elif isinstance(batch[0], string_classes):
|
|
return batch
|
|
elif isinstance(batch[0], collections.Mapping):
|
|
return {key: default_collate([d[key] for d in batch]) for key in batch[0]}
|
|
elif isinstance(batch[0], collections.Sequence):
|
|
transposed = zip(*batch)
|
|
return [default_collate(samples) for samples in transposed]
|
|
|
|
raise TypeError((error_msg.format(type(batch[0]))))
|
|
|
|
|
|
def pin_memory_batch(batch):
|
|
if torch.is_tensor(batch):
|
|
return batch.pin_memory()
|
|
elif isinstance(batch, string_classes):
|
|
return batch
|
|
elif isinstance(batch, collections.Mapping):
|
|
return {k: pin_memory_batch(sample) for k, sample in batch.items()}
|
|
elif isinstance(batch, collections.Sequence):
|
|
return [pin_memory_batch(sample) for sample in batch]
|
|
else:
|
|
return batch
|
|
|
|
|
|
_SIGCHLD_handler_set = False
|
|
r"""Whether SIGCHLD handler is set for DataLoader worker failures. Only one
|
|
handler needs to be set for all DataLoaders in a process."""
|
|
|
|
|
|
def _set_SIGCHLD_handler():
|
|
# Windows doesn't support SIGCHLD handler
|
|
if sys.platform == 'win32':
|
|
return
|
|
# can't set signal in child threads
|
|
if not isinstance(threading.current_thread(), threading._MainThread):
|
|
return
|
|
global _SIGCHLD_handler_set
|
|
if _SIGCHLD_handler_set:
|
|
return
|
|
previous_handler = signal.getsignal(signal.SIGCHLD)
|
|
if not callable(previous_handler):
|
|
previous_handler = None
|
|
|
|
def handler(signum, frame):
|
|
# This following call uses `waitid` with WNOHANG from C side. Therefore,
|
|
# Python can still get and update the process status successfully.
|
|
_error_if_any_worker_fails()
|
|
if previous_handler is not None:
|
|
previous_handler(signum, frame)
|
|
|
|
signal.signal(signal.SIGCHLD, handler)
|
|
_SIGCHLD_handler_set = True
|
|
|
|
|
|
class _DataLoaderIter(object):
|
|
r"""Iterates once over the DataLoader's dataset, as specified by the sampler"""
|
|
|
|
def __init__(self, loader):
|
|
self.dataset = loader.dataset
|
|
self.collate_fn = loader.collate_fn
|
|
self.batch_sampler = loader.batch_sampler
|
|
self.num_workers = loader.num_workers
|
|
self.pin_memory = loader.pin_memory and torch.cuda.is_available()
|
|
self.timeout = loader.timeout
|
|
self.done_event = threading.Event()
|
|
|
|
self.sample_iter = iter(self.batch_sampler)
|
|
|
|
if self.num_workers > 0:
|
|
self.worker_init_fn = loader.worker_init_fn
|
|
self.index_queue = multiprocessing.SimpleQueue()
|
|
self.worker_result_queue = multiprocessing.SimpleQueue()
|
|
self.batches_outstanding = 0
|
|
self.worker_pids_set = False
|
|
self.shutdown = False
|
|
self.send_idx = 0
|
|
self.rcvd_idx = 0
|
|
self.reorder_dict = {}
|
|
|
|
base_seed = torch.LongTensor(1).random_()[0]
|
|
self.workers = [
|
|
multiprocessing.Process(
|
|
target=_worker_loop,
|
|
args=(self.dataset, self.index_queue, self.worker_result_queue, self.collate_fn,
|
|
base_seed + i, self.worker_init_fn, i))
|
|
for i in range(self.num_workers)]
|
|
|
|
if self.pin_memory or self.timeout > 0:
|
|
self.data_queue = queue.Queue()
|
|
if self.pin_memory:
|
|
maybe_device_id = torch.cuda.current_device()
|
|
else:
|
|
# do not initialize cuda context if not necessary
|
|
maybe_device_id = None
|
|
self.worker_manager_thread = threading.Thread(
|
|
target=_worker_manager_loop,
|
|
args=(self.worker_result_queue, self.data_queue, self.done_event, self.pin_memory,
|
|
maybe_device_id))
|
|
self.worker_manager_thread.daemon = True
|
|
self.worker_manager_thread.start()
|
|
else:
|
|
self.data_queue = self.worker_result_queue
|
|
|
|
for w in self.workers:
|
|
w.daemon = True # ensure that the worker exits on process exit
|
|
w.start()
|
|
|
|
_update_worker_pids(id(self), tuple(w.pid for w in self.workers))
|
|
_set_SIGCHLD_handler()
|
|
self.worker_pids_set = True
|
|
|
|
# prime the prefetch loop
|
|
for _ in range(2 * self.num_workers):
|
|
self._put_indices()
|
|
|
|
def __len__(self):
|
|
return len(self.batch_sampler)
|
|
|
|
def _get_batch(self):
|
|
if self.timeout > 0:
|
|
try:
|
|
return self.data_queue.get(timeout=self.timeout)
|
|
except queue.Empty:
|
|
raise RuntimeError('DataLoader timed out after {} seconds'.format(self.timeout))
|
|
else:
|
|
return self.data_queue.get()
|
|
|
|
def __next__(self):
|
|
if self.num_workers == 0: # same-process loading
|
|
indices = next(self.sample_iter) # may raise StopIteration
|
|
batch = self.collate_fn([self.dataset[i] for i in indices])
|
|
if self.pin_memory:
|
|
batch = pin_memory_batch(batch)
|
|
return batch
|
|
|
|
# check if the next sample has already been generated
|
|
if self.rcvd_idx in self.reorder_dict:
|
|
batch = self.reorder_dict.pop(self.rcvd_idx)
|
|
return self._process_next_batch(batch)
|
|
|
|
if self.batches_outstanding == 0:
|
|
self._shutdown_workers()
|
|
raise StopIteration
|
|
|
|
while True:
|
|
assert (not self.shutdown and self.batches_outstanding > 0)
|
|
idx, batch = self._get_batch()
|
|
self.batches_outstanding -= 1
|
|
if idx != self.rcvd_idx:
|
|
# store out-of-order samples
|
|
self.reorder_dict[idx] = batch
|
|
continue
|
|
return self._process_next_batch(batch)
|
|
|
|
next = __next__ # Python 2 compatibility
|
|
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def _put_indices(self):
|
|
assert self.batches_outstanding < 2 * self.num_workers
|
|
indices = next(self.sample_iter, None)
|
|
if indices is None:
|
|
return
|
|
self.index_queue.put((self.send_idx, indices))
|
|
self.batches_outstanding += 1
|
|
self.send_idx += 1
|
|
|
|
def _process_next_batch(self, batch):
|
|
self.rcvd_idx += 1
|
|
self._put_indices()
|
|
if isinstance(batch, ExceptionWrapper):
|
|
raise batch.exc_type(batch.exc_msg)
|
|
return batch
|
|
|
|
def __getstate__(self):
|
|
# TODO: add limited pickling support for sharing an iterator
|
|
# across multiple threads for HOGWILD.
|
|
# Probably the best way to do this is by moving the sample pushing
|
|
# to a separate thread and then just sharing the data queue
|
|
# but signalling the end is tricky without a non-blocking API
|
|
raise NotImplementedError("_DataLoaderIter cannot be pickled")
|
|
|
|
def _shutdown_workers(self):
|
|
try:
|
|
if not self.shutdown:
|
|
self.shutdown = True
|
|
self.done_event.set()
|
|
# if worker_manager_thread is waiting to put, make place for it
|
|
try:
|
|
while not self.data_queue.empty():
|
|
self.data_queue.get()
|
|
except FileNotFoundError:
|
|
# FileNotFoundError can happen when we rebuild the fd
|
|
# fetched from the queue but the socket is already closed
|
|
# from the worker side (e.g. due to Python shutting down).
|
|
pass
|
|
for _ in self.workers:
|
|
self.index_queue.put(None)
|
|
# done_event should be sufficient to exit worker_manager_thread,
|
|
# but be safe here and put another None
|
|
self.worker_result_queue.put(None)
|
|
finally:
|
|
# removes pids no matter what
|
|
if self.worker_pids_set:
|
|
_remove_worker_pids(id(self))
|
|
self.worker_pids_set = False
|
|
|
|
def __del__(self):
|
|
if self.num_workers > 0:
|
|
self._shutdown_workers()
|
|
|
|
|
|
class DataLoader(object):
|
|
r"""
|
|
Data loader. Combines a dataset and a sampler, and provides
|
|
single- or multi-process iterators over the dataset.
|
|
|
|
Arguments:
|
|
dataset (Dataset): dataset from which to load the data.
|
|
batch_size (int, optional): how many samples per batch to load
|
|
(default: 1).
|
|
shuffle (bool, optional): set to ``True`` to have the data reshuffled
|
|
at every epoch (default: False).
|
|
sampler (Sampler, optional): defines the strategy to draw samples from
|
|
the dataset. If specified, ``shuffle`` must be False.
|
|
batch_sampler (Sampler, optional): like sampler, but returns a batch of
|
|
indices at a time. Mutually exclusive with batch_size, shuffle,
|
|
sampler, and drop_last.
|
|
num_workers (int, optional): how many subprocesses to use for data
|
|
loading. 0 means that the data will be loaded in the main process.
|
|
(default: 0)
|
|
collate_fn (callable, optional): merges a list of samples to form a mini-batch.
|
|
pin_memory (bool, optional): If ``True``, the data loader will copy tensors
|
|
into CUDA pinned memory before returning them.
|
|
drop_last (bool, optional): set to ``True`` to drop the last incomplete batch,
|
|
if the dataset size is not divisible by the batch size. If ``False`` and
|
|
the size of dataset is not divisible by the batch size, then the last batch
|
|
will be smaller. (default: False)
|
|
timeout (numeric, optional): if positive, the timeout value for collecting a batch
|
|
from workers. Should always be non-negative. (default: 0)
|
|
worker_init_fn (callable, optional): If not None, this will be called on each
|
|
worker subprocess with the worker id (an int in ``[0, num_workers - 1]``) as
|
|
input, after seeding and before data loading. (default: None)
|
|
|
|
.. note:: By default, each worker will have its PyTorch seed set to
|
|
``base_seed + worker_id``, where ``base_seed`` is a long generated
|
|
by main process using its RNG. You may use ``torch.initial_seed()`` to access
|
|
this value in :attr:`worker_init_fn`, which can be used to set other seeds
|
|
(e.g. NumPy) before data loading.
|
|
|
|
.. warning:: If ``spawn`` start method is used, :attr:`worker_init_fn` cannot be an
|
|
unpicklable object, e.g., a lambda function.
|
|
"""
|
|
|
|
def __init__(self, dataset, batch_size=1, shuffle=False, sampler=None, batch_sampler=None,
|
|
num_workers=0, collate_fn=default_collate, pin_memory=False, drop_last=False,
|
|
timeout=0, worker_init_fn=None):
|
|
self.dataset = dataset
|
|
self.batch_size = batch_size
|
|
self.num_workers = num_workers
|
|
self.collate_fn = collate_fn
|
|
self.pin_memory = pin_memory
|
|
self.drop_last = drop_last
|
|
self.timeout = timeout
|
|
self.worker_init_fn = worker_init_fn
|
|
|
|
if timeout < 0:
|
|
raise ValueError('timeout option should be non-negative')
|
|
|
|
if batch_sampler is not None:
|
|
if batch_size > 1 or shuffle or sampler is not None or drop_last:
|
|
raise ValueError('batch_sampler is mutually exclusive with '
|
|
'batch_size, shuffle, sampler, and drop_last')
|
|
|
|
if sampler is not None and shuffle:
|
|
raise ValueError('sampler is mutually exclusive with shuffle')
|
|
|
|
if self.num_workers < 0:
|
|
raise ValueError('num_workers cannot be negative; '
|
|
'use num_workers=0 to disable multiprocessing.')
|
|
|
|
if sys.platform == "win32" and self.num_workers > 0:
|
|
raise ValueError('num_workers > 0 is not supported on Windows')
|
|
|
|
if batch_sampler is None:
|
|
if sampler is None:
|
|
if shuffle:
|
|
sampler = RandomSampler(dataset)
|
|
else:
|
|
sampler = SequentialSampler(dataset)
|
|
batch_sampler = BatchSampler(sampler, batch_size, drop_last)
|
|
|
|
self.sampler = sampler
|
|
self.batch_sampler = batch_sampler
|
|
|
|
def __iter__(self):
|
|
return _DataLoaderIter(self)
|
|
|
|
def __len__(self):
|
|
return len(self.batch_sampler)
|