pytorch/torch/_dynamo/variables/torch.py
Michael Lazos 041960a1ce [Dynamo] Automatically in-graph traceable tensor subclass ctors (#135151)
Fixes https://github.com/pytorch/pytorch/issues/114389

Previously, dynamo would attempt to trace through the `__init__` of traceable tensor subclasses, since their constructors are AOT dispatcher traceable by definition, dynamo should automatically put these in the graph like we do for any other tensors. Not doing this is difficult because dynamo would need to apply mutations post tensor subclass creation in the graph.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/135151
Approved by: https://github.com/bdhirsh
2024-09-06 12:23:38 +00:00

1109 lines
46 KiB
Python

# mypy: allow-untyped-decorators
# mypy: allow-untyped-defs
import functools
import inspect
import logging
import math
import re
from typing import Dict, List, TYPE_CHECKING
import torch._C
import torch._refs
import torch.fx
import torch.nn
import torch.onnx.operators
from torch._guards import TracingContext
from torch._logging import warning_once
from torch._streambase import _StreamBase
from torch.utils._python_dispatch import is_traceable_wrapper_subclass_type
from .. import config, polyfills, variables
from ..codegen import PyCodegen
from ..create_parameter_op import (
can_convert_to_tracable_parameter,
new_parameter_placeholder,
tracable_create_parameter,
)
from ..device_interface import get_registered_device_interfaces
from ..exc import unimplemented
from ..guards import GuardBuilder, install_guard
from ..source import SyntheticLocalSource
from ..utils import (
check_unspec_or_constant_args,
guard_if_dyn,
has_torch_function,
hashable,
product,
proxy_args_kwargs,
unwrap_if_wrapper,
)
from .base import VariableTracker
from .ctx_manager import (
AutocastModeVariable,
NullContextVariable,
TorchFunctionDisableVariable,
)
from .distributed import DistributedVariable, ProcessGroupVariable
from .lists import ListVariable, TupleVariable
from .torch_function import (
can_dispatch_torch_function,
dispatch_torch_function,
TorchFunctionModeStackVariable,
)
try:
import numpy as np
except ModuleNotFoundError:
np = None # type: ignore[assignment]
try:
from torch.distributed._composable.fsdp import _fsdp_param_group
except ModuleNotFoundError:
_fsdp_param_group = None # type: ignore[assignment]
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
log = logging.getLogger(__name__)
supported_ctx_manager_classes = dict.fromkeys(
[
torch.profiler.profiler.profile,
torch.autograd.forward_ad._set_fwd_grad_enabled,
torch.autograd.forward_ad.dual_level,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
torch._C.DisableTorchFunctionSubclass,
torch._functorch.vmap.vmap_increment_nesting,
torch._functorch.eager_transforms.grad_increment_nesting,
torch._functorch.eager_transforms.jvp_increment_nesting,
torch._functorch.eager_transforms.enable_inplace_requires_grad,
torch.amp.autocast_mode.autocast,
torch.autograd.grad_mode.enable_grad,
torch.autograd.grad_mode.inference_mode,
torch.autograd.grad_mode.no_grad,
torch.autograd.grad_mode.set_grad_enabled,
torch.autograd.graph.disable_saved_tensors_hooks,
torch.cpu.amp.autocast_mode.autocast,
torch.cuda.amp.autocast_mode.autocast,
]
)
REWRITE_OPS_TO_TENSOR_SIZE_METHOD = dict.fromkeys(
[
torch.onnx.operators.shape_as_tensor,
torch._shape_as_tensor,
]
)
constant_fold_functions = [
torch._assert,
torch._utils._get_device_index,
torch._C._get_cublas_allow_tf32,
torch._C._is_any_autocast_enabled,
torch.cuda.get_device_properties,
torch.cuda.is_available,
torch.distributed.is_available,
torch.get_autocast_dtype,
torch.get_autocast_gpu_dtype,
torch.get_default_dtype,
torch.is_autocast_cache_enabled,
torch.is_autocast_cpu_enabled,
torch.is_autocast_enabled,
torch.is_complex,
torch.is_floating_point,
torch.nn.functional._Reduction.get_enum, # type: ignore[attr-defined]
torch.promote_types,
torch._C._get_privateuse1_backend_name,
torch.autograd._is_checkpoint_valid,
]
if torch.distributed.is_available():
constant_fold_functions.extend(
[
torch.distributed.is_initialized,
torch.distributed.get_rank,
torch.distributed.get_world_size,
]
)
# Convert to dict for O(1) access times
constant_fold_functions = dict.fromkeys(constant_fold_functions)
tracing_state_functions = {
torch.jit.is_scripting: False,
torch.jit.is_tracing: False,
torch._C._get_tracing_state: None,
torch.fx._symbolic_trace.is_fx_tracing: False,
torch.onnx.is_in_onnx_export: False,
torch._dynamo.external_utils.is_compiling: True,
torch._utils.is_compiling: True,
torch.compiler.is_compiling: True,
torch.compiler.is_dynamo_compiling: True,
torch.nn.modules.activation._is_make_fx_tracing: False,
}
bin_ops = dict.fromkeys(["add", "sub", "mul", "div", "sqrt"])
class BaseTorchVariable(VariableTracker):
"""common base for all torch.* functions, classes, modules and other things"""
@classmethod
def create_with_source(cls, value, source):
install_guard(source.make_guard(GuardBuilder.FUNCTION_MATCH))
return cls(value, source=source)
def __init__(self, value, **kwargs) -> None:
super().__init__(**kwargs)
self.value = value
def reconstruct(self, codegen):
try:
name = f"{self.value.__module__}.{self.value.__name__}"
except Exception:
name = f"torch_obj_{id(self.value)}"
unique_var_name = "__" + re.sub(r"[^a-zA-Z0-9_]+", "_", name)
codegen.extend_output(
codegen.setup_globally_cached(unique_var_name, self.value)
)
def as_proxy(self):
return self.value
def as_python_constant(self):
return self.value
def call_hasattr(self, tx: "InstructionTranslator", name):
result = hasattr(self.value, name)
return variables.ConstantVariable.create(result)
def can_constant_fold_through(self):
if self.value in constant_fold_functions:
return True
return getattr(self.value, "__module__", None) == "math"
class TorchCtxManagerClassVariable(BaseTorchVariable):
"""Points to a context manager class in torch.* that dynamo has implementations"""
def __repr__(self) -> str:
return f"TorchCtxManagerClassVariable({self.value})"
@staticmethod
def is_matching_cls(value):
# Unwrap if it's a functools.lru_cache wrapper
value = unwrap_if_wrapper(value)
# We can't do isinstance(value, type) check because some ctx managers
# are implemented as a function decorated by contextlib.contextmanager,
# E.g., torch._functorch.vmap.vmap_increment_nesting.
return (
# Context manager type or function with @contextmanager is callable
callable(value)
and (
hashable(value) # accesses value.__hash__()
and value in supported_ctx_manager_classes
)
)
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from . import (
DisabledSavedTensorsHooksVariable,
DualLevelContextManager,
FSDPParamGroupUseTrainingStateVariable,
GradIncrementNestingCtxManagerVariable,
GradInplaceRequiresGradCtxManagerVariable,
GradModeVariable,
InferenceModeVariable,
JvpIncrementNestingCtxManagerVariable,
SetFwdGradEnabledContextManager,
StreamVariable,
VmapIncrementNestingCtxManagerVariable,
)
if self.value is torch.no_grad:
if len(args) == 1 and isinstance(
args[0], variables.functions.BaseUserFunctionVariable
):
ctx = GradModeVariable.create(tx, False)
return ctx.call_function(tx, args, kwargs)
else:
return GradModeVariable.create(tx, False)
elif self.value is torch.enable_grad:
if len(args) == 1 and isinstance(
args[0], variables.functions.BaseUserFunctionVariable
):
ctx = GradModeVariable.create(tx, True)
return ctx.call_function(tx, args, kwargs)
return GradModeVariable.create(tx, True)
elif self.value is torch.set_grad_enabled and len(args) == 1:
return GradModeVariable.create(
tx, args[0].as_python_constant(), initialized=True
)
elif self.value is torch.inference_mode:
assert len(args) <= 1 and len(kwargs) == 0
inf_mode = args[0].as_python_constant() if len(args) == 1 else True
return InferenceModeVariable.create(tx, inf_mode)
elif inspect.isclass(self.value) and issubclass(self.value, _StreamBase):
from torch._dynamo.variables.builder import wrap_fx_proxy_cls
return wrap_fx_proxy_cls(
StreamVariable,
tx,
tx.output.create_proxy(
"call_function",
self.value,
(),
{},
),
)
elif self.value in (
torch.amp.autocast_mode.autocast,
torch.cuda.amp.autocast,
torch.cpu.amp.autocast,
):
return AutocastModeVariable.create(self.value, args, kwargs)
elif self.value in (
torch.profiler.profile,
torch.profiler.record_function,
torch.autograd.profiler.profile,
torch.autograd.profiler.record_function,
):
warning_once(log, "Profiler function %s will be ignored", self.value)
return NullContextVariable()
elif self.value is torch._C.DisableTorchFunctionSubclass:
assert not (args or kwargs)
return TorchFunctionDisableVariable.create(tx)
elif self.value is torch._functorch.vmap.vmap_increment_nesting:
assert len(args) == 2
return VmapIncrementNestingCtxManagerVariable.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch._functorch.eager_transforms.jvp_increment_nesting:
assert len(args) == 0
return JvpIncrementNestingCtxManagerVariable.create(tx)
elif self.value is torch.autograd.forward_ad._set_fwd_grad_enabled:
assert len(args) == 1
return SetFwdGradEnabledContextManager.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch.autograd.forward_ad.dual_level:
assert len(args) == 0
return DualLevelContextManager.create(tx)
elif self.value is torch._functorch.eager_transforms.grad_increment_nesting:
assert len(args) == 0
return GradIncrementNestingCtxManagerVariable.create(tx)
elif (
self.value is torch._functorch.eager_transforms.enable_inplace_requires_grad
):
assert len(args) == 1
return GradInplaceRequiresGradCtxManagerVariable.create(
tx,
[guard_if_dyn(x) for x in args],
)
elif self.value is torch.autograd.graph.disable_saved_tensors_hooks:
assert len(args) == 1
return DisabledSavedTensorsHooksVariable.create(
tx, args[0].as_python_constant()
)
elif (
_fsdp_param_group is not None
and self.value is _fsdp_param_group.FSDPParamGroup.use_training_state
):
assert len(args) == 2
return FSDPParamGroupUseTrainingStateVariable.create(
tx, args[0], args[1].as_python_constant()
)
return super().call_function(tx, args, kwargs)
class TorchInGraphFunctionVariable(BaseTorchVariable):
"""Points to a torch function/method that should be put in FX graph"""
def __repr__(self) -> str:
return f"TorchInGraphFunctionVariable({self.value})"
def get_function(self):
return self.value
@staticmethod
@functools.lru_cache(None)
def _get_handlers():
"""Build a dict from function -> method to handle it so that we are O(1)
in terms of the number of function with special handling."""
handlers = {}
def register(*fns):
def _register(handler):
for fn in fns:
assert fn not in handlers, fn
handlers[fn] = handler
return handler
assert callable(fns[0])
return _register
from torch.backends.cuda import SDPAParams
from . import (
ConstantVariable,
DeterministicAlgorithmsVariable,
GradModeVariable,
StreamContextVariable,
SymNodeVariable,
TensorVariable,
UserDefinedObjectVariable,
)
from .builder import SourcelessBuilder, wrap_fx_proxy, wrap_fx_proxy_cls
@register(*tracing_state_functions)
def handle_tracing_state_functions(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
# See: https://github.com/pytorch/pytorch/issues/110765
if self.value in (
torch._utils.is_compiling,
torch._dynamo.external_utils.is_compiling,
torch.compiler.is_compiling,
torch.compiler.is_dynamo_compiling,
):
tx.mark_inconsistent_side_effects()
return ConstantVariable.create(tracing_state_functions[self.value])
@register(torch.overrides.get_default_nowrap_functions.__wrapped__)
def handle_get_default_nowrap_functions(
self, tx: "InstructionTranslator", *args, **kwargs
):
# [Note: __torch_function__] we return empty here because we restrict
# the set of functions that we trace __torch_function__ on to
# functions outside of the actual set. Implementing this properly will require implementing
# some variable types to track and compare tensor getset descriptors
return SourcelessBuilder.create(
tx, torch.overrides.get_default_nowrap_functions()
)
@register(torch.ops.inductor.accumulate_grad_.default)
def handle_accumulate_grad_(self, tx: "InstructionTranslator", *args, **kwargs):
return tx.inline_user_function_return(
SourcelessBuilder.create(tx, polyfills.accumulate_grad), args, kwargs
)
@register(math.radians)
def handle_radians(self, tx: "InstructionTranslator", *args, **kwargs):
if not check_unspec_or_constant_args(args, kwargs):
# Use polyfill to convert math.radians(x) into math.pi * x / 180.0
return tx.inline_user_function_return(
SourcelessBuilder.create(tx, polyfills.radians), args, kwargs
)
@register(torch.is_tensor, torch.overrides.is_tensor_like)
def handle_is_tensor(self, tx: "InstructionTranslator", arg):
if isinstance(arg, TensorVariable) or (
self.value is torch.overrides.is_tensor_like
and isinstance(arg, UserDefinedObjectVariable)
and hasattr(arg.value, "__torch_function__")
):
return ConstantVariable.create(True)
else:
return ConstantVariable.create(False)
@register(
torch.is_floating_point,
torch.is_complex,
)
def handle_is_floating_point(self, tx: "InstructionTranslator", input):
input_arg = input
if isinstance(input_arg, TensorVariable) and input_arg.dtype is not None:
if self.value is torch.is_floating_point:
return ConstantVariable.create(input_arg.dtype.is_floating_point)
elif self.value is torch.is_complex:
return ConstantVariable.create(input_arg.dtype.is_complex)
else:
raise AssertionError(f"calling {self.value}")
@register(torch.numel)
def handle_numel(self, tx: "InstructionTranslator", input):
if isinstance(input, TensorVariable) and input.size is not None:
return ConstantVariable.create(product(input.size))
elif isinstance(input, TensorVariable):
# Workaround dynamic shapes issue
return input.call_method(tx, "numel", [], {})
@register(*REWRITE_OPS_TO_TENSOR_SIZE_METHOD)
def handle_tensor_size_rewrites(self, tx: "InstructionTranslator", input):
assert isinstance(input, TensorVariable)
return input.call_method(tx, "size", [], {})
@register(
torch.nn.modules.utils._single,
torch.nn.modules.utils._pair,
torch.nn.modules.utils._triple,
torch.nn.modules.utils._quadruple,
torch.nn.modules.utils._ntuple,
)
def handle_ntuple(self, tx: "InstructionTranslator", *args, **kwargs):
return self._call_ntuple(tx, args, kwargs)
@register(torch.is_grad_enabled)
def handle_is_grad_enabled(self, tx):
install_guard(GradModeVariable._guards_singleton)
return ConstantVariable.create(torch.is_grad_enabled())
@register(torch.use_deterministic_algorithms)
def handle_use_deterministic_algorithms(
self, tx: "InstructionTranslator", mode, warn_only=False
):
if warn_only and warn_only.as_python_constant():
unimplemented("torch.use_deterministic_algorithms(warn_only=True)")
return DeterministicAlgorithmsVariable.create(tx, mode.as_python_constant())
@register(torch.are_deterministic_algorithms_enabled)
def handle_are_deterministic_algorithms_enabled(self, tx):
install_guard(DeterministicAlgorithmsVariable._guards_singleton)
return ConstantVariable.create(torch.are_deterministic_algorithms_enabled())
@register(torch._C._is_torch_function_enabled)
def handle_is_torch_function_enabled(self, tx):
install_guard(TorchFunctionDisableVariable._guards_singleton)
return ConstantVariable.create(tx.output.torch_function_enabled)
@register(
torch.overrides.has_torch_function,
torch.overrides.has_torch_function_variadic,
torch.overrides.has_torch_function_unary,
)
def handle_has_torch_function(self, tx: "InstructionTranslator", *args):
elems = (
args[0].unpack_var_sequence(tx)
if len(args) == 1 and isinstance(args[0], TupleVariable)
else args
)
return ConstantVariable.create(
any(has_torch_function(x) for x in elems),
)
@register(
*dict.fromkeys( # remove duplicates
device_interface.stream
for _, device_interface in get_registered_device_interfaces()
)
)
def handle_device_interface_stream(self, tx: "InstructionTranslator", stream):
return StreamContextVariable.create(tx, stream)
@register(torch.from_numpy)
def handle_from_numpy(self, tx: "InstructionTranslator", *args):
if not config.trace_numpy:
unimplemented("torch.from_numpy. config.trace_numpy is False")
if not np:
unimplemented("torch.from_numpy. NumPy is not available")
return wrap_fx_proxy_cls(
target_cls=TensorVariable,
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
torch.as_tensor,
*proxy_args_kwargs(args, {}),
),
example_value=None,
)
@register(torch.jit.annotate)
def handle_jit_annotate(self, tx: "InstructionTranslator", the_type, the_value):
return the_value
@register(torch.backends.cudnn.is_acceptable)
def handle_cudnn_is_acceptable(
self, tx: "InstructionTranslator", tensor, *extra
):
# is_acceptable(tensor) returns true if
# (a) tensor dtype/device are supported by cudnn
# (b) cudnn is available
# (c) some initialization has completed
# technically, it depends on some global state from (c) (torch.backends.cudnn.__cudnn_version)
assert not extra, "Expect 1 input to cudnn.is_acceptable"
assert isinstance(
tensor, TensorVariable
), "Expect input to cudnn.is_acceptable to be a tensor"
tensor_inp = torch.tensor(0, dtype=tensor.dtype, device=tensor.device)
return ConstantVariable.create(
torch.backends.cudnn.is_acceptable(tensor_inp)
)
@register(torch.utils.hooks.BackwardHook)
def handle_backward_hook(self, tx: "InstructionTranslator", *args, **kwargs):
return variables.BackwardHookVariable.create(tx, *args, **kwargs)
@register(torch.nn.Parameter)
def handle_parameter(self, tx: "InstructionTranslator", *args, **kwargs):
return self.call_nn_parameter(tx, *args, **kwargs)
@register(torch.ops.aten.sym_size, torch.ops.aten.sym_size.int)
def handle_sym_size(self_, tx, self, dim=None):
# we see this when retracing already traced code
if dim is not None:
return self.call_method(tx, "size", [dim], {})
@register(torch.ops.aten.sym_stride, torch.ops.aten.sym_stride.int)
def handle_sym_stride(self_, tx, self, dim=None):
if dim is not None:
return self.call_method(tx, "stride", [dim], {})
@register(torch.addcdiv)
def handle_addcdiv(self, tx: "InstructionTranslator", *args, **kwargs):
if len(args) == 3 and "value" in kwargs and len(kwargs) == 1:
# decompose addcdiv into constituent ops, prevents a graph break due to converting
# value to a scalar
result = TorchInGraphFunctionVariable(torch.div).call_function(
tx, [*args[1:]], {}
)
result = TorchInGraphFunctionVariable(torch.mul).call_function(
tx, [result, kwargs["value"]], {}
)
return TorchInGraphFunctionVariable(torch.add).call_function(
tx, [args[0], result], {}
)
@register(torch._foreach_lerp_)
def handle_inplace_foreach_lerp_scalar(
self, tx: "InstructionTranslator", *args, **kwargs
):
if len(args) == 3 and not isinstance(args[2], ListVariable) and not kwargs:
return tx.inline_user_function_return(
SourcelessBuilder.create(tx, polyfills.foreach_lerp_inplace),
args,
kwargs,
)
@register(torch._foreach_pow)
def handle_foreach_pow_scalar(
self, tx: "InstructionTranslator", *args, **kwargs
):
# In eager it's more performant to call item() from within the C op implementation
# in compile, it's more performant to not graph break.
if len(args) == 2 and isinstance(args[0], TensorVariable) and not kwargs:
return tx.inline_user_function_return(
SourcelessBuilder.create(tx, polyfills.foreach_pow_scalar),
args,
kwargs,
)
@register(torch._assert)
def handle_assert(self, tx: "InstructionTranslator", condition, message):
if (condition.is_python_constant() and condition.as_python_constant()) or (
isinstance(condition, variables.SymNodeVariable)
and condition.evaluate_expr()
):
return ConstantVariable(None)
@register(SDPAParams)
def handle_sdpa_params(self, tx: "InstructionTranslator", *args, **kwargs):
return wrap_fx_proxy(
tx,
proxy=tx.output.create_proxy(
"call_function",
torch._C._SDPAParams,
*proxy_args_kwargs(args, kwargs),
),
param_vars=args,
)
if DistributedVariable.is_available():
from torch.distributed._tensor import DTensor
from torch.distributed.distributed_c10d import (
_get_group_size_by_name,
_get_group_tag,
_rank_not_in_group,
_resolve_group_name_by_ranks_and_tag,
get_process_group_ranks,
)
@register(
_get_group_size_by_name,
_get_group_tag,
_rank_not_in_group,
get_process_group_ranks,
_resolve_group_name_by_ranks_and_tag,
)
def handle_constant_processgroup_functions(
self, tx: "InstructionTranslator", *args
):
# because the input is a "ProcessGroupVariable", we'll be guarding on its
# ID_MATCH based on how it was constructed.
# We desugar it at trace-time into ranks by directly calling util
# bake the result into the trace
if len(args) == 1:
# group or group name
assert isinstance(args[0], (ProcessGroupVariable, ConstantVariable))
elif len(args) == 2:
# ranks + tag
assert isinstance(args[0], ListVariable) and isinstance(
args[1], ConstantVariable
)
else:
raise AssertionError(
f"Invalid group value ({args}) for constant pg "
f"function {self.value}"
)
args_as_value = [arg.as_python_constant() for arg in args]
invocation_result = self.value(*args_as_value)
# Note - while we *could* cook up sources around invocations, like a FunctionSource
# the space of invoking functions in the middle of the guard chain is very iffy. As such,
# guard propagation via options is the best we can do.
return SourcelessBuilder.create(tx, invocation_result)
@register(DTensor.from_local)
def handle_from_local(self, tx: "InstructionTranslator", *args, **kwargs):
# rewrite non-primitive args/kwargs to be included in the on-the-fly prim function
# and rewrite args to have only proxyable args, then insert call_function
args_as_value = [x.as_python_constant() for x in args[1:]]
kwargs_as_value = {k: v.as_python_constant() for k, v in kwargs.items()}
def fn_with_prim_types(x):
return self.value(x, *args_as_value, **kwargs_as_value)
# attach the same function name for better debugging
fn_with_prim_types.__name__ = "prim " + self.value.__name__
return wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_with_prim_types,
*proxy_args_kwargs([args[0]], {}),
),
)
@register(torch.nested.nested_tensor)
def handle_nested_tensor(
self,
tx: "InstructionTranslator",
tensor_list=None,
*args,
layout=None,
**kwargs,
):
from .lists import BaseListVariable
if layout and layout.as_python_constant() == torch.strided:
unimplemented("torch.compile does not support strided NestedTensor")
if not isinstance(tensor_list, BaseListVariable):
unimplemented("nested_tensor with non-list input")
@register(torch.nn.functional.one_hot)
def handle_one_hot(self, tx: "InstructionTranslator", *args, **kwargs):
if len(args) + len(kwargs) == 1 or (
len(args) == 2
and args[1].is_python_constant()
and args[1].as_python_constant() == -1
):
unimplemented(
"torch.nn.functional.one_hot with data-dependent output shape"
)
@register(torch.fx.experimental.symbolic_shapes.guard_size_oblivious)
def handle_guard_size_oblivious(self, tx: "InstructionTranslator", expr):
if isinstance(expr, SymNodeVariable):
# TODO: this probably should be folded somewhere else but I'm not sure where
# TODO: some of the other symbolic_shapes special tools can also get this treatment too
return variables.ConstantVariable.create(
torch.fx.experimental.symbolic_shapes.guard_size_oblivious(
expr.sym_num
)
)
elif isinstance(expr, ConstantVariable):
return expr
@register(torch._C._autograd._unsafe_set_version_counter)
def handle_unsafe_set_version_counter(
self, tx: "InstructionTranslator", *args, **kwargs
):
from ..tensor_version_op import _unsafe_set_version_counter
return TorchInGraphFunctionVariable(
_unsafe_set_version_counter
).call_function(tx, [*args], kwargs)
@register(torch.tensor)
def handle_torch_tensor(self, tx: "InstructionTranslator", *args, **kwargs):
def check_any_unspec(x):
# NB: This includes UnspecializedPythonVariable
if isinstance(x, (TensorVariable, SymNodeVariable)):
return True
elif isinstance(x, (ListVariable, TupleVariable)):
return any(check_any_unspec(y) for y in x.items)
# TODO: there maybe other recursive structures you need to
# check
else:
return False
data_arg = None
if args:
data_arg = args[0]
elif "data" in kwargs:
data_arg = kwargs["data"]
# NB: OK to pass torch.tensor(tensor), this will trace fine
if not isinstance(data_arg, TensorVariable) and check_any_unspec(data_arg):
# This is slower and less canonical, so only use it if we
# have to
return TorchInGraphFunctionVariable(torch._refs.tensor).call_function(
tx, [*args], kwargs
)
@register(torch._C._pop_torch_function_stack)
def handle_pop_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
if not tx.symbolic_torch_function_mode_stack:
raise unimplemented("Popping from an empty torch function mode stack")
TorchFunctionModeStackVariable.register_mutation(tx)
return tx.symbolic_torch_function_mode_stack.pop()
@register(torch._C._push_on_torch_function_stack)
def handle_push_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert len(args) == 1 and not kwargs
TorchFunctionModeStackVariable.register_mutation(tx)
tx.symbolic_torch_function_mode_stack.append(args[0])
return ConstantVariable.create(None)
@register(torch._C._len_torch_function_stack)
def handle_len_torch_function(
self, tx: "InstructionTranslator", *args, **kwargs
):
assert not args and not kwargs
return ConstantVariable.create(len(tx.symbolic_torch_function_mode_stack))
@register(torch.set_default_device)
def handle_set_default_device(
self, tx: "InstructionTranslator", *args, **kwargs
):
# Today this is inserted in the graph, once TF mode
# handling is complete, we can trace the device context
# like any other TF mode and remove this special handling
# Insert the TF mode representing the device context at
# the bottom of the stack to match the eager semantics
# Running the graph will ensure that the DeviceContext mode is
# at the correct position in the stack
TorchFunctionModeStackVariable.register_mutation(tx)
if args[0].is_python_constant() and args[0].as_python_constant() is None:
TorchFunctionModeStackVariable.clear_default_device(tx)
else:
TorchFunctionModeStackVariable.register_device_context_insertion(tx)
return None
return handlers
def call_function(
self,
tx: "InstructionTranslator",
args: "List[VariableTracker]",
kwargs: "Dict[str, VariableTracker]",
) -> "VariableTracker":
from . import ConstantVariable, SymNodeVariable, TensorVariable
from .builder import wrap_fx_proxy
if self.can_constant_fold_through() and check_unspec_or_constant_args(
args, kwargs
):
# constant fold
return ConstantVariable.create(
self.as_python_constant()(
*[x.as_python_constant() for x in args],
**{k: v.as_python_constant() for k, v in kwargs.items()},
),
)
special_handler = self._get_handlers().get(self.value)
if special_handler:
result = special_handler(self, tx, *args, **kwargs)
if result:
return result
if can_dispatch_torch_function(tx, args, kwargs):
return dispatch_torch_function(tx, self, args, kwargs)
else:
any_symints_or_symfloats = any(isinstance(x, SymNodeVariable) for x in args)
all_ints_or_floats = all(
isinstance(x, (variables.ConstantVariable, variables.SymNodeVariable))
for x in args
)
if (
getattr(self.value, "__module__", "") == "torch"
and self.value.__name__ in bin_ops
and any_symints_or_symfloats
and all_ints_or_floats
):
msg = f"""\
Calling {str(self.value)} on only torch.SymInt arguments is not yet supported.
To support this behavior, we need to allow const-propping tensors that store symint data.
For now, dynamo will explicitly graph break when it encounters user code with this behavior.
"""
log.warning(msg)
unimplemented(msg)
# TODO(voz): Replace w/ dynamic shape rewrite table.
# Ideally, we would be able to do this at ctor time, but alas we need a combination
# of value + args to determine this.
fn_ = self.value
if any_symints_or_symfloats:
torch_sym_op = f"_sym_{self.value.__name__}"
if getattr(self.value, "__module__", None) == "math" and hasattr(
torch, torch_sym_op
):
fn_ = getattr(torch, torch_sym_op)
fake_out_shape = None
if "out" in kwargs and isinstance(kwargs["out"], variables.TensorVariable):
# Calling fake tensor propagation can mutate the out= tensor in
# tx.output.tracked_fakes. tracked_fakes are used to apply
# symbolic_shape guards. Mutating them destroys the information
# prior to tracing, which is essential for creating right
# guards. So save the shape now, and check later if it has
# changed. If it has, graph break.
fake_out_shape = kwargs["out"].proxy.node.meta["example_value"].shape
tensor_variable = wrap_fx_proxy(
tx=tx,
proxy=tx.output.create_proxy(
"call_function",
fn_,
*proxy_args_kwargs(args, kwargs),
),
)
if (
isinstance(tensor_variable, TensorVariable)
and "requires_grad" in kwargs
and kwargs["requires_grad"].as_python_constant()
):
unimplemented(
"""factory functions that return tensors that require grad are not supported.
Either create the tensor outside the compiled region, or do not set the tensor to require_grad"""
)
if "out" in kwargs and not (
isinstance(kwargs["out"], variables.ConstantVariable)
and kwargs["out"].as_python_constant() is None
):
# out variants of torch operators like torch.sort and
# torch.sigmoid mutate the tensors in the out field. Track such
# tensors and rewrite the symbolic locals.
if isinstance(tensor_variable, TupleVariable):
assert isinstance(kwargs["out"], (TupleVariable, ListVariable))
output_tensor_names = [
tx.find_symbolic_locals_name(x) for x in kwargs["out"].items
]
for idx, name in enumerate(output_tensor_names):
if name in tx.symbolic_locals:
tx.symbolic_locals[name] = tensor_variable.items[idx]
for out_tensor, result_tensor in zip(
kwargs["out"].items, tensor_variable.items
):
if (
out_tensor.source
and out_tensor in tx.output.graphargs
and isinstance(out_tensor, variables.TensorVariable)
and isinstance(result_tensor, variables.TensorVariable)
and out_tensor.size != result_tensor.size
):
# It's hard to get out variants with resizing on graph inputs work
# properly across dynamo/aot/inductor, just fall back.
unimplemented("out variants with resizing on graph inputs")
elif isinstance(tensor_variable, TensorVariable):
assert isinstance(kwargs["out"], TensorVariable)
assert "example_value" in kwargs["out"].proxy.node.meta
fake_tensor = tensor_variable.proxy.node.meta["example_value"]
fake_out = kwargs["out"].proxy.node.meta["example_value"]
if (
kwargs["out"].source
and kwargs["out"] in tx.output.graphargs
and fake_out_shape != fake_tensor.shape
):
# It's hard to get out variants with resizing on graph inputs work
# properly across dynamo/aot/inductor, just fall back.
unimplemented("out variants with resizing on graph inputs")
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented(
"out= op was called where output tensor was non-contiguous"
)
name = tx.find_symbolic_locals_name(kwargs["out"])
if name in tx.symbolic_locals:
tx.symbolic_locals[name] = tensor_variable
elif (
isinstance(tensor_variable, ConstantVariable)
and tensor_variable.value is None
):
# Handle out-variant custom ops that return None.
if isinstance(kwargs["out"], TensorVariable):
assert "example_value" in kwargs["out"].proxy.node.meta
fake_out = kwargs["out"].proxy.node.meta["example_value"]
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented(
"out= op was called where output tensor was non-contiguous"
)
elif isinstance(kwargs["out"], ListVariable):
for idx, x in enumerate(kwargs["out"].items):
assert "example_value" in x.proxy.node.meta # type: ignore[attr-defined]
fake_out = x.proxy.node.meta["example_value"] # type: ignore[attr-defined]
if not torch._prims_common.is_contiguous(fake_out):
# It's difficult to handle strides correctly in functionalization
# when calling an out= op with a non-contiguous out argument
unimplemented(
"out= op was called where some of the output tensors were non-contiguous"
)
else:
unimplemented(f"out variant of {type(kwargs['out'])}")
return tensor_variable
def _call_ntuple(self, tx: "InstructionTranslator", args, kwargs):
"""inline behavior of torch.nn.modules.utils._ntuple"""
if self.value is torch.nn.modules.utils._ntuple:
count = args[0].as_python_constant()
else:
count = self.value.__closure__[0].cell_contents
assert isinstance(count, int)
assert not kwargs
def handle_ntuple(value):
if value.has_unpack_var_sequence(tx):
return variables.TupleVariable(
list(value.unpack_var_sequence(tx)),
)
elif value.is_python_constant():
# constant prop through it
return variables.ConstantVariable.create(
torch.nn.modules.utils._ntuple(count)(value.as_python_constant()),
)
else:
unimplemented(f"torch.nn.modules.utils._ntuple({value})")
if self.value is torch.nn.modules.utils._ntuple:
return variables.LambdaVariable(handle_ntuple)
else:
return handle_ntuple(args[0])
@classmethod
def call_nn_parameter(cls, tx, data=None, requires_grad=True):
"""A call to torch.nn.Parameter() gets lifted to before the graph"""
if tx.export:
unimplemented("nn parameter construction not supported with export")
if isinstance(requires_grad, variables.VariableTracker):
try:
requires_grad = requires_grad.as_python_constant()
except NotImplementedError:
unimplemented("Parameter(requires_grad=...) not constant")
if not isinstance(data, variables.TensorVariable):
unimplemented(f"Parameter(data={data}) not implemented")
# this results in cleaner graphs, but only works for inputs
if data.source:
return cls._nn_param_via_prefix_insert(tx, data, requires_grad)
if is_traceable_wrapper_subclass_type(data.class_type):
unimplemented("Parameter constructor with tensor subclass NYI")
if not can_convert_to_tracable_parameter():
unimplemented("Workaround for issues with nn_parameter construction")
try:
shape = tuple(data.var_getattr(tx, "shape").as_python_constant())
dtype = data.var_getattr(tx, "dtype").as_python_constant()
device = data.var_getattr(tx, "device").as_python_constant()
except NotImplementedError as e:
unimplemented(f"Parameter not python_constant: {e}")
placeholder = tx.output.synthetic_graph_input(
new_parameter_placeholder, [shape, dtype, device, requires_grad]
)
if data.requires_grad:
data = data.call_method(tx, "detach", [], {})
from .builder import wrap_fx_proxy
result = wrap_fx_proxy(
tx,
tx.output.create_proxy(
"call_function",
tracable_create_parameter,
(data.as_proxy(), placeholder.as_proxy()),
{},
),
)
assert isinstance(result, variables.TensorVariable)
result.class_type = torch.nn.Parameter
# TODO(jansel/bdhirsh) - There is some issue with
# tracable_create_paramter. It does not seem to use the right
# grad_enabled. Since this is parameter, we can just override the
# has_grad_fn field to False to workaround the issue.
result.has_grad_fn = False
# In reconstruct() should use the original parameter. The one returned by the graph will be an alias.
result.source = placeholder.source
# TODO(jansel): if the new param falls out of scope, currently it won't get freed until
# the end of the graph. We should fix this.
return result
@staticmethod
def _nn_param_via_prefix_insert(tx: "InstructionTranslator", data, requires_grad):
# Alternate version if we have a .source
from .builder import VariableBuilder
varname = tx.output.new_var()
# construct the nn.Parmeter before the graph save it to varname
cg = PyCodegen(tx)
cg.add_push_null(lambda: cg.load_import_from("torch.nn", "Parameter"))
cg(data.source)
cg(variables.ConstantVariable(requires_grad))
cg.call_function(2, False)
cg.store(varname)
tx.output.pregraph_bytecode.extend(cg.get_instructions())
data_node = data.as_proxy().node
if data_node.op not in ("placeholder", "get_attr"):
unimplemented(
"Unexpected type of data placeholder op for parameter construction"
)
# add the newly constructed nn.Parameter as a graph input
source = SyntheticLocalSource(varname)
example_value = torch.nn.Parameter(
tx.output.example_value_from_input_node(data.as_proxy().node)
)
result = VariableBuilder(tx, source)(example_value)
# No need to guard on this since we already guarded on `data`.
# These guards would fail since varname doesn't exist until after the function starts
TracingContext.get().guards_context.dynamo_guards.remove_guards_with_source(
source
)
return result