pytorch/test/cpp/api/serialization.cpp
Peter Goldsborough 03d0a70a4d Set random seed at the start of C++ tests (#8903)
Summary:
Sets the random seed at the start of C++ tests so that everything is super deterministic.

I made sure we only generate random values from torch instead of `std::`, so that this seed always applies. I.e. I do:

```
torch::randint(2, {2}, at::kInt64)
```

instead of

```
std::rand() % 2
```

Also got rid of the tests that test the random seeding, since it would interfere here. And the test is not useful since we just use ATen's seeding mechanism, which should work.

Fixes  #7288 #7286 #7289

ebetica ezyang
Closes https://github.com/pytorch/pytorch/pull/8903

Differential Revision: D8667269

Pulled By: goldsborough

fbshipit-source-id: a833e86e156d5e68dae8c53a4b1c433cb0608b6c
2018-06-27 20:09:46 -07:00

329 lines
8.5 KiB
C++

#include <catch.hpp>
#include <torch/nn/modules/functional.h>
#include <torch/nn/modules/linear.h>
#include <torch/nn/modules/sequential.h>
#include <torch/optim/optimizer.h>
#include <torch/optim/sgd.h>
#include <torch/serialization.h>
#include <torch/tensor.h>
#include <torch/utils.h>
#include <test/cpp/api/util.h>
#include <cereal/archives/portable_binary.hpp>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
using namespace torch::nn;
namespace {
std::shared_ptr<Sequential> xor_model() {
return std::make_shared<Sequential>(
Linear(2, 8),
Functional(at::sigmoid),
Linear(8, 1),
Functional(at::sigmoid));
}
} // namespace
TEST_CASE("serialization") {
torch::manual_seed(0);
SECTION("undefined") {
auto x = torch::Tensor();
REQUIRE(!x.defined());
auto y = torch::randn({5});
std::stringstream ss;
torch::save(ss, &x);
torch::load(ss, &y);
REQUIRE(!y.defined());
}
SECTION("cputypes") {
for (int i = 0; i < static_cast<int>(torch::Dtype::NumOptions); i++) {
if (i == static_cast<int>(torch::Dtype::Half)) {
// XXX can't serialize half tensors at the moment since contiguous() is
// not implemented for this type;
continue;
} else if (i == static_cast<int>(torch::Dtype::Undefined)) {
// We can't construct a tensor for this type. This is tested in
// serialization/undefined anyway.
continue;
}
auto x = torch::ones(
{5, 5}, torch::getType(torch::kCPU, static_cast<torch::Dtype>(i)));
auto y = torch::empty({});
std::stringstream ss;
torch::save(ss, &x);
torch::load(ss, &y);
REQUIRE(y.defined());
REQUIRE(x.sizes().vec() == y.sizes().vec());
if (torch::isIntegralType(static_cast<torch::Dtype>(i))) {
REQUIRE(x.equal(y));
} else {
REQUIRE(x.allclose(y));
}
}
}
SECTION("binary") {
auto x = torch::randn({5, 5});
auto y = torch::Tensor();
std::stringstream ss;
{
cereal::BinaryOutputArchive archive(ss);
archive(x);
}
{
cereal::BinaryInputArchive archive(ss);
archive(y);
}
REQUIRE(y.defined());
REQUIRE(x.sizes().vec() == y.sizes().vec());
REQUIRE(x.allclose(y));
}
SECTION("portable_binary") {
auto x = torch::randn({5, 5});
auto y = torch::Tensor();
std::stringstream ss;
{
cereal::PortableBinaryOutputArchive archive(ss);
archive(x);
}
{
cereal::PortableBinaryInputArchive archive(ss);
archive(y);
}
REQUIRE(y.defined());
REQUIRE(x.sizes().vec() == y.sizes().vec());
REQUIRE(x.allclose(y));
}
SECTION("resized") {
auto x = torch::randn({11, 5});
x.resize_({5, 5});
auto y = torch::Tensor();
std::stringstream ss;
{
cereal::BinaryOutputArchive archive(ss);
archive(x);
}
{
cereal::BinaryInputArchive archive(ss);
archive(y);
}
REQUIRE(y.defined());
REQUIRE(x.sizes().vec() == y.sizes().vec());
REQUIRE(x.allclose(y));
}
SECTION("sliced") {
auto x = torch::randn({11, 5});
x = x.slice(0, 1, 3);
auto y = torch::Tensor();
std::stringstream ss;
{
cereal::BinaryOutputArchive archive(ss);
archive(x);
}
{
cereal::BinaryInputArchive archive(ss);
archive(y);
}
REQUIRE(y.defined());
REQUIRE(x.sizes().vec() == y.sizes().vec());
REQUIRE(x.allclose(y));
}
SECTION("noncontig") {
auto x = torch::randn({11, 5});
x = x.slice(1, 1, 4);
auto y = torch::Tensor();
std::stringstream ss;
{
cereal::BinaryOutputArchive archive(ss);
archive(x);
}
{
cereal::BinaryInputArchive archive(ss);
archive(y);
}
REQUIRE(y.defined());
REQUIRE(x.sizes().vec() == y.sizes().vec());
REQUIRE(x.allclose(y));
}
SECTION("xor") {
// We better be able to save and load a XOR model!
auto getLoss = [](std::shared_ptr<Sequential> model, uint32_t batch_size) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
for (size_t i = 0; i < batch_size; i++) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].toCLong() ^ inputs[i][1].toCLong();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1)
.momentum(0.9)
.nesterov(true)
.weight_decay(1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
running_loss = running_loss * 0.99 + loss.data().sum().toCFloat() * 0.01;
REQUIRE(epoch < 3000);
epoch++;
}
std::stringstream ss;
torch::save(ss, model);
torch::load(ss, model2);
auto loss = getLoss(model2, 100);
REQUIRE(loss.toCFloat() < 0.1);
}
SECTION("optim") {
auto model1 = Linear(5, 2);
auto model2 = Linear(5, 2);
auto model3 = Linear(5, 2);
// Models 1, 2, 3 will have the same params
std::stringstream ss;
torch::save(ss, model1.get());
torch::load(ss, model2.get());
ss.seekg(0, std::ios::beg);
torch::load(ss, model3.get());
// Make some optimizers with momentum (and thus state)
auto optim1 = torch::optim::SGD(
model1->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim2_2 = torch::optim::SGD(
model2->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto optim3_2 = torch::optim::SGD(
model3->parameters(), torch::optim::SGDOptions(1e-1).momentum(0.9));
auto x = torch::ones({10, 5}, torch::requires_grad());
auto step = [&](torch::optim::Optimizer& optimizer, Linear model) {
optimizer.zero_grad();
auto y = model->forward(x).sum();
y.backward();
optimizer.step();
};
// Do 2 steps of model1
step(optim1, model1);
step(optim1, model1);
// Do 2 steps of model 2 without saving the optimizer
step(optim2, model2);
step(optim2_2, model2);
// Do 2 steps of model 3 while saving the optimizer
step(optim3, model3);
ss.clear();
torch::save(ss, &optim3);
torch::load(ss, &optim3_2);
step(optim3_2, model3);
auto param1 = model1->parameters();
auto param2 = model2->parameters();
auto param3 = model3->parameters();
for (auto& p : param1) {
auto& name = p.key;
// Model 1 and 3 should be the same
REQUIRE(param1[name].norm().toCFloat() == param3[name].norm().toCFloat());
REQUIRE(param1[name].norm().toCFloat() != param2[name].norm().toCFloat());
}
}
}
TEST_CASE("serialization_cuda", "[cuda]") {
torch::manual_seed(0);
// We better be able to save and load a XOR model!
auto getLoss = [](std::shared_ptr<Sequential> model, uint32_t batch_size) {
auto inputs = torch::empty({batch_size, 2});
auto labels = torch::empty({batch_size});
for (size_t i = 0; i < batch_size; i++) {
inputs[i] = torch::randint(2, {2}, torch::kInt64);
labels[i] = inputs[i][0].toCLong() ^ inputs[i][1].toCLong();
}
auto x = model->forward<torch::Tensor>(inputs);
return torch::binary_cross_entropy(x, labels);
};
auto model = xor_model();
auto model2 = xor_model();
auto model3 = xor_model();
auto optimizer = torch::optim::SGD(
model->parameters(),
torch::optim::SGDOptions(1e-1).momentum(0.9).nesterov(true).weight_decay(
1e-6));
float running_loss = 1;
int epoch = 0;
while (running_loss > 0.1) {
torch::Tensor loss = getLoss(model, 4);
optimizer.zero_grad();
loss.backward();
optimizer.step();
running_loss = running_loss * 0.99 + loss.data().sum().toCFloat() * 0.01;
REQUIRE(epoch < 3000);
epoch++;
}
std::stringstream ss;
torch::save(ss, model);
torch::load(ss, model2);
auto loss = getLoss(model2, 100);
REQUIRE(loss.toCFloat() < 0.1);
model2->cuda();
ss.clear();
torch::save(ss, model2);
torch::load(ss, model3);
loss = getLoss(model3, 100);
REQUIRE(loss.toCFloat() < 0.1);
}