pytorch/test/cpp/api/modules.cpp
Peter Goldsborough 03d0a70a4d Set random seed at the start of C++ tests (#8903)
Summary:
Sets the random seed at the start of C++ tests so that everything is super deterministic.

I made sure we only generate random values from torch instead of `std::`, so that this seed always applies. I.e. I do:

```
torch::randint(2, {2}, at::kInt64)
```

instead of

```
std::rand() % 2
```

Also got rid of the tests that test the random seeding, since it would interfere here. And the test is not useful since we just use ATen's seeding mechanism, which should work.

Fixes  #7288 #7286 #7289

ebetica ezyang
Closes https://github.com/pytorch/pytorch/pull/8903

Differential Revision: D8667269

Pulled By: goldsborough

fbshipit-source-id: a833e86e156d5e68dae8c53a4b1c433cb0608b6c
2018-06-27 20:09:46 -07:00

278 lines
8.0 KiB
C++

#include <catch.hpp>
#include <torch/nn/module.h>
#include <torch/nn/modules/batchnorm.h>
#include <torch/nn/modules/conv.h>
#include <torch/nn/modules/dropout.h>
#include <torch/nn/modules/embedding.h>
#include <torch/nn/modules/functional.h>
#include <torch/nn/modules/linear.h>
#include <torch/tensor.h>
#include <torch/utils.h>
#include <test/cpp/api/util.h>
using namespace torch::nn;
class TestModel : public torch::nn::Module {
public:
TestModel() {
l1 = register_module("l1", Linear(10, 3));
l2 = register_module("l2", Linear(3, 5));
l3 = register_module("l3", Linear(5, 100));
}
Linear l1, l2, l3;
};
class NestedModel : public torch::nn::Module {
public:
NestedModel() {
l1 = register_module("l1", Linear(5, 20));
t = register_module("test", std::make_shared<TestModel>());
param_ = register_parameter("param", torch::empty({3, 2, 21}));
}
torch::Tensor param_;
Linear l1;
std::shared_ptr<TestModel> t;
};
TEST_CASE("modules") {
torch::manual_seed(0);
SECTION("conv") {
SECTION("1d") {
Conv1d model(Conv1dOptions(3, 2, 3).stride(2));
auto x = torch::randn({2, 3, 5}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 3);
REQUIRE(s.ndimension() == 0);
for (auto i = 0; i < 3; i++) {
REQUIRE(y.size(i) == 2);
}
REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3);
}
SECTION("2d") {
SECTION("even") {
Conv2d model(Conv2dOptions(3, 2, 3).stride(2));
auto x = torch::randn({2, 3, 5, 5}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 4);
REQUIRE(s.ndimension() == 0);
for (auto i = 0; i < 4; i++) {
REQUIRE(y.size(i) == 2);
}
REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 3);
}
SECTION("uneven") {
Conv2d model(Conv2dOptions(3, 2, {3, 2}).stride({2, 2}));
auto x = torch::randn({2, 3, 5, 4}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 4);
REQUIRE(s.ndimension() == 0);
for (auto i = 0; i < 4; i++) {
REQUIRE(y.size(i) == 2);
}
REQUIRE(model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 2);
}
}
SECTION("3d") {
Conv3d model(Conv3dOptions(3, 2, 3).stride(2));
auto x = torch::randn({2, 3, 5, 5, 5}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 5);
REQUIRE(s.ndimension() == 0);
for (auto i = 0; i < 5; i++) {
REQUIRE(y.size(i) == 2);
}
REQUIRE(
model->parameters()["weight"].grad().numel() == 3 * 2 * 3 * 3 * 3);
}
}
SECTION("linear") {
SECTION("basic1") {
Linear model(5, 2);
auto x = torch::randn({10, 5}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 2);
REQUIRE(s.ndimension() == 0);
REQUIRE(y.size(0) == 10);
REQUIRE(y.size(1) == 2);
REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5);
}
}
SECTION("simple") {
auto model = std::make_shared<torch::SimpleContainer>();
auto l1 = model->add(Linear(10, 3), "l1");
auto l2 = model->add(Linear(3, 5), "l2");
auto l3 = model->add(Linear(5, 100), "l3");
auto x = torch::randn({1000, 10}, torch::requires_grad());
x = l1->forward(x).clamp_min(0);
x = l2->forward(x).clamp_min(0);
x = l3->forward(x).clamp_min(0);
x.backward();
REQUIRE(x.ndimension() == 2);
REQUIRE(x.size(0) == 1000);
REQUIRE(x.size(1) == 100);
REQUIRE(x.data().min().toCFloat() == 0);
}
SECTION("embedding") {
SECTION("basic") {
int dict_size = 10;
Embedding model(dict_size, 2);
// Cannot get gradients to change indices (input) - only for embedding
// params
auto x = torch::full({10}, dict_size - 1, torch::kInt64);
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 2);
REQUIRE(s.ndimension() == 0);
REQUIRE(y.size(0) == 10);
REQUIRE(y.size(1) == 2);
REQUIRE(model->parameters()["table"].grad().numel() == 2 * dict_size);
}
SECTION("list") {
Embedding model(6, 4);
auto x = torch::full({2, 3}, 5, torch::kInt64);
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 3);
REQUIRE(y.size(0) == 2);
REQUIRE(y.size(1) == 3);
REQUIRE(y.size(2) == 4);
}
}
SECTION("dropout") {
Dropout dropout(0.5);
torch::Tensor x = torch::ones(100, torch::requires_grad());
torch::Tensor y = dropout->forward(x);
y.backward();
REQUIRE(y.ndimension() == 1);
REQUIRE(y.size(0) == 100);
REQUIRE(y.sum().toCFloat() < 130); // Probably
REQUIRE(y.sum().toCFloat() > 70); // Probably
dropout->eval();
y = dropout->forward(x);
REQUIRE(y.data().sum().toCFloat() == 100);
}
SECTION("param") {
auto model = std::make_shared<NestedModel>();
auto parameters = model->parameters();
REQUIRE(parameters["param"].size(0) == 3);
REQUIRE(parameters["param"].size(1) == 2);
REQUIRE(parameters["param"].size(2) == 21);
REQUIRE(parameters["l1.bias"].size(0) == 20);
REQUIRE(parameters["l1.weight"].size(0) == 20);
REQUIRE(parameters["l1.weight"].size(1) == 5);
REQUIRE(parameters["test.l1.bias"].size(0) == 3);
REQUIRE(parameters["test.l1.weight"].size(0) == 3);
REQUIRE(parameters["test.l1.weight"].size(1) == 10);
REQUIRE(parameters["test.l2.bias"].size(0) == 5);
REQUIRE(parameters["test.l2.weight"].size(0) == 5);
REQUIRE(parameters["test.l2.weight"].size(1) == 3);
REQUIRE(parameters["test.l3.bias"].size(0) == 100);
REQUIRE(parameters["test.l3.weight"].size(0) == 100);
REQUIRE(parameters["test.l3.weight"].size(1) == 5);
}
SECTION("functional") {
{
bool was_called = false;
auto functional = Functional([&was_called](torch::Tensor input) {
was_called = true;
return input;
});
auto output = functional->forward(torch::ones(5, torch::requires_grad()));
REQUIRE(was_called);
REQUIRE(output.equal(torch::ones(5, torch::requires_grad())));
was_called = false;
output = functional(torch::ones(5, torch::requires_grad()));
REQUIRE(was_called);
REQUIRE(output.equal(torch::ones(5, torch::requires_grad())));
}
{
auto functional = Functional(torch::relu);
REQUIRE(functional(torch::ones({})).data().toCFloat() == 1);
REQUIRE(functional(torch::ones({})).toCFloat() == 1);
REQUIRE(functional(torch::ones({}) * -1).toCFloat() == 0);
}
{
auto functional = Functional(torch::elu, /*alpha=*/1, /*scale=*/0);
REQUIRE(functional(torch::ones({})).toCFloat() == 0);
}
}
}
TEST_CASE("modules_cuda", "[cuda]") {
torch::manual_seed(0);
SECTION("1") {
Linear model(5, 2);
model->cuda();
auto x =
torch::randn({10, 5}, torch::device(torch::kCUDA).requires_grad(true));
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 2);
REQUIRE(s.ndimension() == 0);
REQUIRE(y.size(0) == 10);
REQUIRE(y.size(1) == 2);
REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5);
}
SECTION("2") {
Linear model(5, 2);
model->cuda();
model->cpu();
auto x = torch::randn({10, 5}, torch::requires_grad());
auto y = model->forward(x);
torch::Tensor s = y.sum();
s.backward();
REQUIRE(y.ndimension() == 2);
REQUIRE(s.ndimension() == 0);
REQUIRE(y.size(0) == 10);
REQUIRE(y.size(1) == 2);
REQUIRE(model->parameters()["weight"].grad().numel() == 2 * 5);
}
}