mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
git-subtree-dir: torch/lib/THNN git-subtree-mainline:c3f0c1e2e0git-subtree-split:4fe7059a31
340 lines
10 KiB
C
340 lines
10 KiB
C
#ifndef TH_GENERIC_FILE
|
|
#define TH_GENERIC_FILE "generic/SpatialDilatedConvolution.c"
|
|
#else
|
|
|
|
void THNN_(SpatialDilatedConvolution_updateOutput)(
|
|
THNNState *state,
|
|
THTensor *input,
|
|
THTensor *output,
|
|
THTensor *weight,
|
|
THTensor *bias,
|
|
THTensor *columns,
|
|
THTensor *ones,
|
|
int kW, int kH,
|
|
int dW, int dH,
|
|
int padW, int padH,
|
|
int dilationW, int dilationH)
|
|
{
|
|
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
|
|
THArgCheck(weight->nDimension == 4, 4, "weight tensor must be 4D (nOutputPlane,nInputPlane,kH,kW)");
|
|
THArgCheck(!bias || weight->size[0] == bias->size[0], 4, "nOutputPlane mismatch in weight and bias");
|
|
THArgCheck(kW > 0 && kH > 0, 8, "kernel size should be greater than zero");
|
|
THArgCheck(dW > 0 && dH > 0, 10, "stride should be greater than zero");
|
|
|
|
// Params:
|
|
int nInputPlane = weight->size[1];
|
|
int nOutputPlane = weight->size[0];
|
|
|
|
int batch = 1;
|
|
if (input->nDimension == 3) {
|
|
THArgCheck(input->size[0] == nInputPlane, 2, "input channels and nInputPlane dont match");
|
|
// Force batch
|
|
batch = 0;
|
|
THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]);
|
|
} else {
|
|
THArgCheck(input->size[1] == nInputPlane, 2, "input channels and nInputPlane dont match");
|
|
}
|
|
|
|
long inputWidth = input->size[3];
|
|
long inputHeight = input->size[2];
|
|
long outputWidth = (inputWidth + 2*padW - (dilationW * (kW - 1) + 1)) / dW + 1;
|
|
long outputHeight = (inputHeight + 2*padH - (dilationH * (kH - 1) + 1)) / dH + 1;
|
|
|
|
if (outputWidth < 1 || outputHeight < 1)
|
|
THError("Given input size: (%dx%dx%d). Calculated output size: (%dx%dx%d). Output size is too small",
|
|
nInputPlane,inputHeight,inputWidth,nOutputPlane,outputHeight,outputWidth);
|
|
|
|
// Batch size + input planes
|
|
long batchSize = input->size[0];
|
|
|
|
// Resize output
|
|
THTensor_(resize4d)(output, batchSize, nOutputPlane, outputHeight, outputWidth);
|
|
THTensor_(zero)(output);
|
|
|
|
// Resize temporary columns
|
|
THTensor_(resize2d)(columns, nInputPlane*kW*kH, outputHeight*outputWidth);
|
|
|
|
// Define a buffer of ones, for bias accumulation
|
|
// Note: this buffer can be shared with other modules, it only ever gets increased,
|
|
// and always contains ones.
|
|
if (ones->nDimension != 2 || ones->size[0]*ones->size[1] < outputHeight*outputWidth) {
|
|
// Resize plane and fill with ones...
|
|
THTensor_(resize2d)(ones, outputHeight, outputWidth);
|
|
THTensor_(fill)(ones, 1);
|
|
}
|
|
|
|
// Helpers
|
|
THTensor *input_n = THTensor_(new)();
|
|
THTensor *output_n = THTensor_(new)();
|
|
|
|
// For each elt in batch, do:
|
|
for (int elt = 0; elt < batchSize; elt ++) {
|
|
// Matrix mulitply per output:
|
|
THTensor_(select)(input_n, input, 0, elt);
|
|
THTensor_(select)(output_n, output, 0, elt);
|
|
|
|
// Do Bias first:
|
|
// M,N,K are dims of matrix A and B
|
|
long m_ = nOutputPlane;
|
|
long n_ = outputHeight * outputWidth;
|
|
long k_ = 1;
|
|
|
|
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
|
|
if (bias) {
|
|
THBlas_(gemm)(
|
|
't', 'n',
|
|
n_, m_, k_,
|
|
1,
|
|
THTensor_(data)(ones), k_,
|
|
THTensor_(data)(bias), k_,
|
|
0,
|
|
THTensor_(data)(output_n), n_
|
|
);
|
|
} else {
|
|
THTensor_(zero)(output_n);
|
|
}
|
|
|
|
// Extract columns:
|
|
THNN_(im2col)(
|
|
THTensor_(data)(input_n),
|
|
nInputPlane, inputHeight, inputWidth, kH, kW, padH, padW, dH, dW,
|
|
dilationH, dilationW,
|
|
THTensor_(data)(columns)
|
|
);
|
|
|
|
// M,N,K are dims of matrix A and B
|
|
long m = nOutputPlane;
|
|
long n = columns->size[1];
|
|
long k = nInputPlane*kH*kW;
|
|
|
|
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
|
|
THBlas_(gemm)(
|
|
'n', 'n',
|
|
n, m, k,
|
|
1,
|
|
THTensor_(data)(columns), n,
|
|
THTensor_(data)(weight), k,
|
|
1,
|
|
THTensor_(data)(output_n), n
|
|
);
|
|
}
|
|
|
|
// Free
|
|
THTensor_(free)(input_n);
|
|
THTensor_(free)(output_n);
|
|
|
|
// Resize output
|
|
if (batch == 0) {
|
|
THTensor_(resize3d)(output, nOutputPlane, outputHeight, outputWidth);
|
|
THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth);
|
|
}
|
|
}
|
|
|
|
void THNN_(SpatialDilatedConvolution_updateGradInput)(
|
|
THNNState *state,
|
|
THTensor *input,
|
|
THTensor *gradOutput,
|
|
THTensor *gradInput,
|
|
THTensor *weight,
|
|
THTensor *gradColumns,
|
|
int kW, int kH,
|
|
int dW, int dH,
|
|
int padW, int padH,
|
|
int dilationW, int dilationH)
|
|
{
|
|
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
|
|
THArgCheck(weight->nDimension == 4, 4, "weight tensor must be 4D (nOutputPlane,nInputPlane,kH,kW)");
|
|
THArgCheck(kW > 0 && kH > 0, 9, "kernel size should be greater than zero");
|
|
THArgCheck(dW > 0 && dH > 0, 11, "stride should be greater than zero");
|
|
|
|
// Params
|
|
int nInputPlane = weight->size[1];
|
|
int nOutputPlane = weight->size[0];
|
|
|
|
int batch = 1;
|
|
if (input->nDimension == 3) {
|
|
// Force batch
|
|
batch = 0;
|
|
THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]);
|
|
THTensor_(resize4d)(gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2]);
|
|
}
|
|
|
|
long inputWidth = input->size[3];
|
|
long inputHeight = input->size[2];
|
|
long outputWidth = (inputWidth + 2*padW - (dilationW * (kW - 1) + 1)) / dW + 1;
|
|
long outputHeight = (inputHeight + 2*padH - (dilationH * (kH - 1) + 1)) / dH + 1;
|
|
|
|
// Batch size + input planes
|
|
long batchSize = input->size[0];
|
|
|
|
// Resize output
|
|
THTensor_(resize4d)(gradInput, batchSize, nInputPlane, inputHeight, inputWidth);
|
|
|
|
// Resize temporary columns
|
|
THTensor_(resize2d)(gradColumns, nInputPlane*kW*kH, outputHeight*outputWidth);
|
|
THTensor_(zero)(gradColumns);
|
|
|
|
// Helpers
|
|
THTensor *gradInput_n = THTensor_(new)();
|
|
THTensor *gradOutput_n = THTensor_(new)();
|
|
|
|
// For each elt in batch, do:
|
|
for (int elt = 0; elt < batchSize; elt ++) {
|
|
// Matrix mulitply per sample:
|
|
THTensor_(select)(gradInput_n, gradInput, 0, elt);
|
|
THTensor_(select)(gradOutput_n, gradOutput, 0, elt);
|
|
|
|
// M,N,K are dims of matrix A and B
|
|
long m = nInputPlane*kW*kH;
|
|
long n = gradColumns->size[1];
|
|
long k = nOutputPlane;
|
|
|
|
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
|
|
THBlas_(gemm)(
|
|
'n', 't',
|
|
n, m, k,
|
|
1,
|
|
THTensor_(data)(gradOutput_n), n,
|
|
THTensor_(data)(weight), m,
|
|
0,
|
|
THTensor_(data)(gradColumns), n
|
|
);
|
|
|
|
// Unpack columns back into input:
|
|
THNN_(col2im)(
|
|
THTensor_(data)(gradColumns),
|
|
nInputPlane, inputHeight, inputWidth, kH, kW, padH, padW, dH, dW,
|
|
dilationH, dilationW,
|
|
THTensor_(data)(gradInput_n)
|
|
);
|
|
}
|
|
|
|
// Free
|
|
THTensor_(free)(gradInput_n);
|
|
THTensor_(free)(gradOutput_n);
|
|
|
|
// Resize output
|
|
if (batch == 0) {
|
|
THTensor_(resize3d)(gradOutput, nOutputPlane, outputHeight, outputWidth);
|
|
THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth);
|
|
THTensor_(resize3d)(gradInput, nInputPlane, inputHeight, inputWidth);
|
|
}
|
|
}
|
|
|
|
|
|
void THNN_(SpatialDilatedConvolution_accGradParameters)(
|
|
THNNState *state,
|
|
THTensor *input,
|
|
THTensor *gradOutput,
|
|
THTensor *gradWeight,
|
|
THTensor *gradBias,
|
|
THTensor *columns,
|
|
THTensor *ones,
|
|
int kW, int kH,
|
|
int dW, int dH,
|
|
int padW, int padH,
|
|
int dilationW, int dilationH,
|
|
real scale)
|
|
{
|
|
THArgCheck(input->nDimension == 3 || input->nDimension == 4, 2, "3D or 4D (batch mode) tensor is expected");
|
|
THArgCheck(gradWeight->nDimension == 4, 4, "gradWeight tensor must be 4D (nOutputPlane,nInputPlane,kH,kW)");
|
|
THArgCheck(!gradBias || gradWeight->size[0] == gradBias->size[0], 4, "nOutputPlane mismatch in gradWeight and gradBias");
|
|
THArgCheck(kW > 0 && kH > 0, 8, "kernel size should be greater than zero");
|
|
THArgCheck(dW > 0 && dH > 0, 10, "stride should be greater than zero");
|
|
|
|
// Params
|
|
int nInputPlane = gradWeight->size[1];
|
|
int nOutputPlane = gradWeight->size[0];
|
|
|
|
int batch = 1;
|
|
if (input->nDimension == 3) {
|
|
// Force batch
|
|
batch = 0;
|
|
THTensor_(resize4d)(input, 1, input->size[0], input->size[1], input->size[2]);
|
|
THTensor_(resize4d)(gradOutput, 1, gradOutput->size[0], gradOutput->size[1], gradOutput->size[2]);
|
|
}
|
|
|
|
long inputWidth = input->size[3];
|
|
long inputHeight = input->size[2];
|
|
long outputWidth = (inputWidth + 2*padW - (dilationW * (kW - 1) + 1)) / dW + 1;
|
|
long outputHeight = (inputHeight + 2*padH - (dilationH * (kH - 1) + 1)) / dH + 1;
|
|
|
|
// Batch size + input planes
|
|
long batchSize = input->size[0];
|
|
|
|
// Define a buffer of ones, for bias accumulation
|
|
if (ones->nDimension != 2 || ones->size[0]*ones->size[1] < outputHeight*outputWidth) {
|
|
// Resize plane and fill with ones...
|
|
THTensor_(resize2d)(ones, outputHeight, outputWidth);
|
|
THTensor_(fill)(ones, 1);
|
|
}
|
|
|
|
// Resize temporary columns
|
|
THTensor_(resize2d)(columns, nInputPlane*kW*kH, outputHeight*outputWidth);
|
|
|
|
// Helpers
|
|
THTensor *input_n = THTensor_(new)();
|
|
THTensor *gradOutput_n = THTensor_(new)();
|
|
|
|
// For each elt in batch, do:
|
|
for (int elt = 0; elt < batchSize; elt ++) {
|
|
// Matrix mulitply per output:
|
|
THTensor_(select)(input_n, input, 0, elt);
|
|
THTensor_(select)(gradOutput_n, gradOutput, 0, elt);
|
|
|
|
// Extract columns:
|
|
THNN_(im2col)(
|
|
THTensor_(data)(input_n),
|
|
nInputPlane, inputHeight, inputWidth, kH, kW, padH, padW, dH, dW,
|
|
dilationH, dilationW,
|
|
THTensor_(data)(columns)
|
|
);
|
|
|
|
// M,N,K are dims of matrix A and B
|
|
long m = nOutputPlane;
|
|
long n = nInputPlane*kW*kH;
|
|
long k = columns->size[1];
|
|
|
|
// Do GEMM (note: this is a bit confusing because gemm assumes column-major matrices)
|
|
THBlas_(gemm)(
|
|
't', 'n',
|
|
n, m, k,
|
|
scale,
|
|
THTensor_(data)(columns), k,
|
|
THTensor_(data)(gradOutput_n), k,
|
|
1,
|
|
THTensor_(data)(gradWeight), n
|
|
);
|
|
|
|
// Do Bias:
|
|
// M,N,K are dims of matrix A and B
|
|
long m_ = nOutputPlane;
|
|
long k_ = outputHeight * outputWidth;
|
|
|
|
// Do GEMV (note: this is a bit confusing because gemv assumes column-major matrices)
|
|
if (gradBias) {
|
|
THBlas_(gemv)(
|
|
't',
|
|
k_, m_,
|
|
scale,
|
|
THTensor_(data)(gradOutput_n), k_,
|
|
THTensor_(data)(ones), 1,
|
|
1,
|
|
THTensor_(data)(gradBias), 1
|
|
);
|
|
}
|
|
}
|
|
|
|
// Free
|
|
THTensor_(free)(input_n);
|
|
THTensor_(free)(gradOutput_n);
|
|
|
|
// Resize
|
|
if (batch == 0) {
|
|
THTensor_(resize3d)(gradOutput, nOutputPlane, outputHeight, outputWidth);
|
|
THTensor_(resize3d)(input, nInputPlane, inputHeight, inputWidth);
|
|
}
|
|
}
|
|
|
|
#endif
|