mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
git-subtree-dir: torch/lib/THNN git-subtree-mainline:c3f0c1e2e0git-subtree-split:4fe7059a31
111 lines
2.5 KiB
C
111 lines
2.5 KiB
C
#ifndef TH_GENERIC_FILE
|
|
#define TH_GENERIC_FILE "generic/LogSoftMax.c"
|
|
#else
|
|
|
|
void THNN_(LogSoftMax_updateOutput)(
|
|
THNNState *state,
|
|
THTensor *input,
|
|
THTensor *output)
|
|
{
|
|
real *input_data, *output_data;
|
|
long nframe = 0, dim = 0;
|
|
long t, d;
|
|
|
|
if (input->nDimension == 1)
|
|
{
|
|
nframe = 1;
|
|
dim = input->size[0];
|
|
}
|
|
else if (input->nDimension == 2)
|
|
{
|
|
nframe = input->size[0];
|
|
dim = input->size[1];
|
|
}
|
|
else
|
|
{
|
|
THArgCheck(0, 2, "vector or matrix expected");
|
|
}
|
|
|
|
input = THTensor_(newContiguous)(input);
|
|
THTensor_(resizeAs)(output, input);
|
|
|
|
real *input_data0 = THTensor_(data)(input);
|
|
real *output_data0 = THTensor_(data)(output);
|
|
|
|
accreal logsum;
|
|
real maxInput;
|
|
#pragma omp parallel for private(t, d, maxInput, logsum, input_data, output_data)
|
|
for (t = 0; t < nframe; t++)
|
|
{
|
|
logsum = 0;
|
|
maxInput = -THInf;
|
|
input_data = input_data0 + dim*t;
|
|
output_data = output_data0 + dim*t;
|
|
|
|
for (d = 0; d < dim; d++)
|
|
maxInput = THMax(maxInput, input_data[d]);
|
|
|
|
for (d = 0; d < dim; d++)
|
|
logsum += exp(input_data[d] - maxInput);
|
|
logsum = maxInput + log(logsum);
|
|
|
|
for (d = 0; d < dim; d++)
|
|
output_data[d] = input_data[d] - logsum;
|
|
}
|
|
|
|
THTensor_(free)(input);
|
|
}
|
|
|
|
void THNN_(LogSoftMax_updateGradInput)(
|
|
THNNState *state,
|
|
THTensor *input,
|
|
THTensor *gradOutput,
|
|
THTensor *gradInput,
|
|
THTensor *output)
|
|
{
|
|
|
|
gradOutput = THTensor_(newContiguous)(gradOutput);
|
|
real *gradInput_data, *gradOutput_data, *output_data;
|
|
long nframe = 0, dim = 0;
|
|
long t, d;
|
|
|
|
if (output->nDimension == 1)
|
|
{
|
|
nframe = 1;
|
|
dim = output->size[0];
|
|
}
|
|
else if (output->nDimension == 2)
|
|
{
|
|
nframe = output->size[0];
|
|
dim = output->size[1];
|
|
}
|
|
else
|
|
{
|
|
THError("vector or matrix expected");
|
|
}
|
|
|
|
THTensor_(resizeAs)(gradInput, output);
|
|
real *gradInput_data0 = THTensor_(data)(gradInput);
|
|
real *output_data0 = THTensor_(data)(output);
|
|
real *gradOutput_data0 = THTensor_(data)(gradOutput);
|
|
accreal sum;
|
|
#pragma omp parallel for private(t, sum, d, gradInput_data, output_data, gradOutput_data)
|
|
for (t = 0; t < nframe; t++)
|
|
{
|
|
sum = 0;
|
|
gradInput_data = gradInput_data0 + dim*t;
|
|
output_data = output_data0 + dim*t;
|
|
gradOutput_data = gradOutput_data0 + dim*t;
|
|
|
|
for (d = 0; d < dim; d++)
|
|
sum += gradOutput_data[d];
|
|
|
|
for (d = 0; d < dim; d++)
|
|
gradInput_data[d] = gradOutput_data[d] - exp(output_data[d])*sum;
|
|
}
|
|
|
|
THTensor_(free)(gradOutput);
|
|
}
|
|
|
|
#endif
|