mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
git-subtree-dir: torch/lib/THNN git-subtree-mainline:c3f0c1e2e0git-subtree-split:4fe7059a31
145 lines
4.5 KiB
C
145 lines
4.5 KiB
C
#ifndef TH_GENERIC_FILE
|
||
#define TH_GENERIC_FILE "generic/BatchNormalization.c"
|
||
#else
|
||
|
||
void THNN_(BatchNormalization_updateOutput)(
|
||
THNNState *state, THTensor *input, THTensor *output,
|
||
THTensor *weight, THTensor *bias,
|
||
THTensor *running_mean, THTensor *running_var,
|
||
THTensor *save_mean, THTensor *save_std,
|
||
bool train, double momentum, double eps)
|
||
{
|
||
long nInput = THTensor_(size)(input, 1);
|
||
long f,n = THTensor_(nElement)(input) / nInput;
|
||
|
||
#pragma omp parallel for
|
||
for (f = 0; f < nInput; ++f) {
|
||
THTensor *in = THTensor_(newSelect)(input, 1, f);
|
||
THTensor *out = THTensor_(newSelect)(output, 1, f);
|
||
|
||
real mean, invstd;
|
||
|
||
if (train) {
|
||
// compute mean per input
|
||
accreal sum = 0;
|
||
TH_TENSOR_APPLY(real, in, sum += *in_data;);
|
||
|
||
mean = (real) sum / n;
|
||
THTensor_(set1d)(save_mean, f, (real) mean);
|
||
|
||
// compute variance per input
|
||
sum = 0;
|
||
TH_TENSOR_APPLY(real, in,
|
||
sum += (*in_data - mean) * (*in_data - mean););
|
||
|
||
if (sum == 0 && eps == 0.0) {
|
||
invstd = 0;
|
||
} else {
|
||
invstd = (real) (1 / sqrt(sum/n + eps));
|
||
}
|
||
THTensor_(set1d)(save_std, f, (real) invstd);
|
||
|
||
// update running averages
|
||
THTensor_(set1d)(running_mean, f,
|
||
(real) (momentum * mean + (1 - momentum) * THTensor_(get1d)(running_mean, f)));
|
||
|
||
accreal unbiased_var = sum / (n - 1);
|
||
THTensor_(set1d)(running_var, f,
|
||
(real) (momentum * unbiased_var + (1 - momentum) * THTensor_(get1d)(running_var, f)));
|
||
} else {
|
||
mean = THTensor_(get1d)(running_mean, f);
|
||
invstd = 1 / sqrt(THTensor_(get1d)(running_var, f) + eps);
|
||
}
|
||
|
||
// compute output
|
||
real w = weight ? THTensor_(get1d)(weight, f) : 1;
|
||
real b = bias ? THTensor_(get1d)(bias, f) : 0;
|
||
|
||
TH_TENSOR_APPLY2(real, in, real, out,
|
||
*out_data = (real) (((*in_data - mean) * invstd) * w + b););
|
||
|
||
THTensor_(free)(out);
|
||
THTensor_(free)(in);
|
||
}
|
||
}
|
||
|
||
void THNN_(BatchNormalization_backward)(
|
||
THNNState *state, THTensor *input, THTensor *gradOutput, THTensor *gradInput,
|
||
THTensor *gradWeight, THTensor *gradBias, THTensor *weight,
|
||
THTensor *running_mean, THTensor *running_var,
|
||
THTensor *save_mean, THTensor *save_std,
|
||
bool train, double scale, double eps)
|
||
{
|
||
long nInput = THTensor_(size)(input, 1);
|
||
long f,n = THTensor_(nElement)(input) / nInput;
|
||
|
||
#pragma omp parallel for
|
||
for (f = 0; f < nInput; ++f) {
|
||
THTensor *in = THTensor_(newSelect)(input, 1, f);
|
||
THTensor *gradOut = THTensor_(newSelect)(gradOutput, 1, f);
|
||
real w = weight ? THTensor_(get1d)(weight, f) : 1;
|
||
real mean, invstd;
|
||
if (train) {
|
||
mean = THTensor_(get1d)(save_mean, f);
|
||
invstd = THTensor_(get1d)(save_std, f);
|
||
} else {
|
||
mean = THTensor_(get1d)(running_mean, f);
|
||
invstd = 1 / sqrt(THTensor_(get1d)(running_var, f) + eps);
|
||
}
|
||
|
||
// sum over all gradOutput in feature plane
|
||
accreal sum = 0;
|
||
TH_TENSOR_APPLY(real, gradOut, sum += *gradOut_data;);
|
||
|
||
// dot product of the Q(X) and gradOuput
|
||
accreal dotp = 0;
|
||
TH_TENSOR_APPLY2(real, in, real, gradOut,
|
||
dotp += (*in_data - mean) * (*gradOut_data););
|
||
|
||
if (gradInput) {
|
||
THTensor *gradIn = THTensor_(newSelect)(gradInput, 1, f);
|
||
|
||
if (train) {
|
||
// when in training mode
|
||
// Q(X) = X - E[x] ; i.e. input centered to zero mean
|
||
// Y = Q(X) / σ ; i.e. BN output before weight and bias
|
||
// dL/dX = (Q(dL/dY) - dot(Y, dL/dY) * Y) / σ * w
|
||
|
||
// projection of gradOutput on to output scaled by std
|
||
real k = (real) dotp * invstd * invstd / n;
|
||
TH_TENSOR_APPLY2(real, gradIn, real, in,
|
||
*gradIn_data = (*in_data - mean) * k;);
|
||
|
||
accreal gradMean = sum / n;
|
||
TH_TENSOR_APPLY2(real, gradIn, real, gradOut,
|
||
*gradIn_data = (*gradOut_data - gradMean - *gradIn_data) * invstd * w;);
|
||
|
||
} else {
|
||
// when in evaluation mode
|
||
// Q(X) = X - running_mean ; i.e. input centered to zero mean
|
||
// Y = Q(X) / running_std ; i.e. BN output before weight and bias
|
||
// dL/dX = w / running_std
|
||
TH_TENSOR_APPLY2(real, gradIn, real, gradOut,
|
||
*gradIn_data = *gradOut_data * invstd * w;);
|
||
}
|
||
|
||
THTensor_(free)(gradIn);
|
||
}
|
||
|
||
if (gradWeight) {
|
||
real val = THTensor_(get1d)(gradWeight, f);
|
||
THTensor_(set1d)(gradWeight, f, val + scale * dotp * invstd);
|
||
}
|
||
|
||
if (gradBias) {
|
||
real val = THTensor_(get1d)(gradBias, f);
|
||
THTensor_(set1d)(gradBias, f, val + scale * sum);
|
||
}
|
||
|
||
THTensor_(free)(gradOut);
|
||
THTensor_(free)(in);
|
||
}
|
||
}
|
||
|
||
#endif
|