mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: The initialization phase of each checkpoint object simply loads the nanmes of the blobs in the checkpoints. When we load from the checkpoints, the names of the blobs are given. We can skip this init step. Reviewed By: azzolini Differential Revision: D4808114 fbshipit-source-id: 4c740049c1014f3e93b4b87f43e3937afdefa25a
377 lines
14 KiB
Python
377 lines
14 KiB
Python
## @package checkpoint
|
|
# Module caffe2.python.checkpoint
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
import os
|
|
import logging
|
|
from caffe2.python import core, context
|
|
from caffe2.python.net_builder import ops
|
|
from caffe2.python.task import Node, Task, TaskGroup, TaskOutput, WorkspaceType
|
|
|
|
logger = logging.getLogger(__name__)
|
|
logger.setLevel(logging.INFO)
|
|
|
|
# The name of the special net that is used to store all the blob names in the
|
|
# workspace.
|
|
__BLOB_NAMES_NET__ = 'get_blob_list'
|
|
|
|
@context.define_context()
|
|
class Job(object):
|
|
"""
|
|
A Job defines three TaskGroups: the `init_group`, the `epoch_group` and the
|
|
`exit_group` which will be run by a JobRunner.
|
|
|
|
The `init_group` will be run only once at startup. Its role is to
|
|
initialize globally persistent blobs such as model weights, accumulators
|
|
and data file lists.
|
|
|
|
The `epoch_group` will be run in a loop after init_group. The loop will
|
|
exit when any of the stop signals added with `add_stop_signal` is True
|
|
at the end of an epoch.
|
|
|
|
The `exit_group` will be run only once at the very end of the job, when one
|
|
of the stopping criterias for `epoch_group` was met. The role of this group
|
|
is save the results of training in the end of the job.
|
|
|
|
Jobs are context-driven, so that Tasks can be added to the active Job
|
|
without having to explicitly pass the job object around.
|
|
|
|
Example of usage:
|
|
|
|
def build_reader(partitions):
|
|
with Job.current().init_group:
|
|
reader = HiveReader(init_reader, ..., partitions)
|
|
Task(step=init_reader)
|
|
with Job.current().epoch_group:
|
|
limited_reader = ReaderWithLimit(reader, num_iter=10000)
|
|
data_queue = pipe(limited_reader, num_threads=8)
|
|
Job.current().add_stop_signal(limited_reader.data_finished())
|
|
return data_queue
|
|
|
|
def build_hogwild_trainer(reader, model):
|
|
with Job.current().init_group:
|
|
Task(step=model.param_init_net)
|
|
with Job.current().epoch_group:
|
|
pipe(reader, processor=model, num_threads=8)
|
|
with Job.current().exit_group:
|
|
Task(step=model.save_model_net)
|
|
|
|
with Job() as job:
|
|
reader = build_reader(partitions)
|
|
model = build_model(params)
|
|
build_hogwild_trainer(reader, model)
|
|
"""
|
|
def __init__(self,
|
|
init_group=None, epoch_group=None,
|
|
exit_group=None, stop_signals=None,
|
|
nodes_to_checkpoint=None):
|
|
self.init_group = init_group or TaskGroup(
|
|
workspace_type=WorkspaceType.GLOBAL)
|
|
self.epoch_group = epoch_group or TaskGroup()
|
|
self.exit_group = exit_group or TaskGroup()
|
|
self.stop_signals = stop_signals or []
|
|
self._nodes_to_checkpoint = nodes_to_checkpoint
|
|
|
|
def nodes_to_checkpoint(self):
|
|
if self._nodes_to_checkpoint:
|
|
return self._nodes_to_checkpoint
|
|
else:
|
|
return self.init_group.used_nodes()
|
|
|
|
def compile(self, session_class):
|
|
return Job(
|
|
init_group=session_class.compile(self.init_group),
|
|
epoch_group=session_class.compile(self.epoch_group),
|
|
exit_group=session_class.compile(self.exit_group),
|
|
stop_signals=self.stop_signals,
|
|
nodes_to_checkpoint=self.nodes_to_checkpoint())
|
|
|
|
def __enter__(self):
|
|
self.epoch_group.__enter__()
|
|
return self
|
|
|
|
def __exit__(self, *args):
|
|
self.epoch_group.__exit__()
|
|
|
|
def add_stop_signal(self, output):
|
|
if isinstance(output, core.BlobReference):
|
|
t = Task(outputs=[output], group=self.epoch_group)
|
|
output = t.outputs()[0]
|
|
assert isinstance(output, TaskOutput)
|
|
self.stop_signals.append(output)
|
|
|
|
|
|
class CheckpointManager(object):
|
|
"""
|
|
Controls saving and loading of workspaces on every epoch boundary of a job.
|
|
If a CheckpointManager instance is passed to JobRunner, then JobRunner will
|
|
call `init`, `read` and `save` at different moments in between epoch runs.
|
|
"""
|
|
def __init__(self, db, db_type):
|
|
self._db = db
|
|
self._db_type = db_type
|
|
# make sure these blobs are the first in the checkpoint file.
|
|
self._net = core.Net('!!checkpoint_mngr')
|
|
self._blob_names = self._net.AddExternalInput('blob_names')
|
|
self._names_output = None
|
|
|
|
def init(self, nodes=None, retrieve_from_epoch=None):
|
|
"""
|
|
Build a Task that will be run once after the job's `init_group` is run.
|
|
This task will determine which blobs need to be checkpointed.
|
|
If retrieve_from_epoch is not None, then the checkpoint metadata is
|
|
retrieved from a previously saved checkpoint.
|
|
"""
|
|
assert nodes is None or len(nodes) == 1, (
|
|
'CheckpointManager only supports single node.')
|
|
with Task(outputs=[self._blob_names]) as task:
|
|
if retrieve_from_epoch is None:
|
|
ops.GetAllBlobNames(
|
|
[],
|
|
self._blob_names,
|
|
include_shared=False)
|
|
else:
|
|
ops.Load(
|
|
[], self._blob_names,
|
|
db=self._dbname(retrieve_from_epoch),
|
|
db_type=self._db_type,
|
|
absolute_path=True)
|
|
self._names_output = task.outputs()[0]
|
|
return task
|
|
|
|
def blob_list(self):
|
|
assert self._names_output
|
|
return self._names_output.fetch().tolist()
|
|
|
|
def _dbname(self, epoch):
|
|
return '%s.%06d' % (self._db, epoch)
|
|
|
|
def load(self, epoch):
|
|
"""
|
|
Build a Task that will be run by JobRunner when the job is to be
|
|
resumed from a given epoch. This task will run a Load op that will
|
|
load and deserialize all relevant blobs from a persistent storage.
|
|
"""
|
|
logger.info('Load from %s' % self._dbname(epoch))
|
|
with Task() as task:
|
|
ops.Load(
|
|
[],
|
|
self.blob_list(),
|
|
db=self._dbname(epoch),
|
|
db_type=self._db_type,
|
|
absolute_path=True)
|
|
return task
|
|
|
|
def load_blobs_from_checkpoint(self, blob_names, epoch):
|
|
"""
|
|
Builds a Task that loads only the necessary blobs from a checkpoint of
|
|
the given epoch. The necessary blobs are given in the blob_names
|
|
argument.
|
|
|
|
Args:
|
|
blob_names: A list of strings. Each string is the name of a
|
|
blob.
|
|
epoch: The checkpoint epoch to load from.
|
|
|
|
Returns:
|
|
A Task which loads the specified blobs from the checkpoint of the
|
|
given epoch.
|
|
"""
|
|
logger.info('Load from %s' % self._dbname(epoch))
|
|
with Task() as task:
|
|
ops.Load(
|
|
[],
|
|
blob_names,
|
|
db=self._dbname(epoch),
|
|
db_type=self._db_type,
|
|
absolute_path=True,
|
|
allow_incomplete=True)
|
|
return task
|
|
|
|
def save(self, epoch):
|
|
"""
|
|
Build a Task that is run once after `init_group` and after each
|
|
epoch is run. This will execute a Save ops to serialize and persist
|
|
blobs present in the global workspaace.
|
|
"""
|
|
logger.info('Save to %s' % self._dbname(epoch))
|
|
with Task() as task:
|
|
ops.Save(
|
|
self.blob_list(), [], db=self._dbname(epoch),
|
|
db_type=self._db_type, absolute_path=True)
|
|
return task
|
|
|
|
|
|
class MultiNodeCheckpointManager(object):
|
|
"""
|
|
Coordinates checkpointing and checkpointing across multiple nodes.
|
|
Each of `init`, `load` and `save` will build TaskGroups which will
|
|
trigger checkpointing on each of the nodes involved in a distributed job.
|
|
"""
|
|
def __init__(
|
|
self, db_prefix, db_type, node_manager_class=CheckpointManager):
|
|
self._node_manager_class = node_manager_class
|
|
self._node_managers = None
|
|
self._db_prefix = db_prefix
|
|
self._db_type = db_type
|
|
|
|
def _task_group(self, func, *args, **kw):
|
|
assert self._node_managers is not None, 'init must be called first.'
|
|
with TaskGroup(WorkspaceType.GLOBAL) as task_group:
|
|
for node, manager in self._node_managers:
|
|
with Node(node):
|
|
func(manager, *args, **kw)
|
|
return task_group
|
|
|
|
def init(self, nodes, retrieve_from_epoch=None):
|
|
if self._node_managers is not None:
|
|
assert [node for node, _ in self._node_managers] == nodes
|
|
return
|
|
self._node_managers = []
|
|
for node in nodes:
|
|
with Node(node):
|
|
manager = self._node_manager_class(
|
|
db=os.path.join(self._db_prefix, node),
|
|
db_type=self._db_type)
|
|
self._node_managers.append((node, manager))
|
|
return self._task_group(
|
|
self._node_manager_class.init,
|
|
nodes=[node],
|
|
retrieve_from_epoch=retrieve_from_epoch)
|
|
|
|
def load(self, epoch):
|
|
return self._task_group(self._node_manager_class.load, epoch)
|
|
|
|
def load_blobs_locally(self, nodes, blob_names, epoch, session):
|
|
"""Loads the necessary blobs from the checkpoints to the current node.
|
|
|
|
Args:
|
|
blob_names: A list of strings. Each string is the name of a
|
|
blob.
|
|
epoch: An integer. The checkpoint epoch to load from.
|
|
session: A Session object to execute the Load ops.
|
|
"""
|
|
if self._node_managers is not None:
|
|
assert [node for node, _ in self._node_managers] == nodes
|
|
else:
|
|
self._node_managers = []
|
|
for node in nodes:
|
|
with Node(node):
|
|
manager = self._node_manager_class(
|
|
db=os.path.join(self._db_prefix, node),
|
|
db_type=self._db_type)
|
|
self._node_managers.append((node, manager))
|
|
assert self._node_managers is not None, 'must initialize node managers'
|
|
for _, manager in self._node_managers:
|
|
with TaskGroup(WorkspaceType.GLOBAL) as task_group:
|
|
manager.load_blobs_from_checkpoint(blob_names, epoch)
|
|
session.run(task_group)
|
|
|
|
def save(self, epoch):
|
|
return self._task_group(self._node_manager_class.save, epoch)
|
|
|
|
|
|
class JobRunner(object):
|
|
"""
|
|
Implement the runtime logic for jobs with checkpointing at the level of
|
|
epoch. Can be used to run either single-host or distributed jobs. Job
|
|
runner is a callable to be called once from the client, passing a Session
|
|
as argument. This call will block until the Job execution is complete.
|
|
|
|
If a checkpoint_manager is passed, checkpoints will be taken after
|
|
initialization and after each epoch execution. If, in addition,
|
|
`resume_from_epoch` is an epoch number, the corresponding checkpoint will
|
|
be loaded and job execution will continue from the given epoch. In
|
|
this case, the job's init_group will not be run.
|
|
|
|
Refer to checkpoint_test.py for an example.
|
|
"""
|
|
def __init__(self, job, checkpoint_manager=None, resume_from_epoch=None):
|
|
self.resume_from_epoch = resume_from_epoch
|
|
self.checkpoint = checkpoint_manager
|
|
self.job = job
|
|
|
|
def __call__(self, client):
|
|
from_scratch = self.resume_from_epoch is None
|
|
if from_scratch:
|
|
client.run(self.job.init_group)
|
|
|
|
if self.checkpoint:
|
|
logger.info('Preparing checkpoint ...')
|
|
client.run(self.checkpoint.init(
|
|
self.job.nodes_to_checkpoint(),
|
|
retrieve_from_epoch=self.resume_from_epoch))
|
|
if from_scratch:
|
|
logger.info('Saving first checkpoint ...')
|
|
client.run(self.checkpoint.save(0))
|
|
logger.info('First checkpoint saved.')
|
|
else:
|
|
logger.info('Loading checkpoint for epoch {} ...'.format(
|
|
self.resume_from_epoch))
|
|
client.run(self.checkpoint.load(self.resume_from_epoch))
|
|
logger.info('Checkpoint loaded.')
|
|
|
|
epoch = 1 if from_scratch else self.resume_from_epoch + 1
|
|
while True:
|
|
logger.info('Starting epoch %d.' % epoch)
|
|
client.run(self.job.epoch_group)
|
|
logger.info('Ran epoch %d.' % epoch)
|
|
stop_signals = [o.fetch() for o in self.job.stop_signals]
|
|
|
|
if self.checkpoint:
|
|
logger.info('Saving checkpoint ...')
|
|
client.run(self.checkpoint.save(epoch))
|
|
logger.info('Checkpoint saved.')
|
|
|
|
if any(stop_signals):
|
|
logger.info('Stopping.')
|
|
break
|
|
epoch += 1
|
|
client.run(self.job.exit_group)
|
|
return epoch
|
|
|
|
def load_blobs_from_checkpoints(self, blob_names, epoch, session):
|
|
"""Loads the necessary blobs from the checkpoints.
|
|
|
|
Checkpoints store the snapshots of the workspace in each node.
|
|
Sometimes we only need to load a subset of the blobs from the
|
|
checkpoints. One common scenario is to load only the model blobs from
|
|
the checkpoints for evaluation purpose. Given the names of the necessary
|
|
blobs, this function goes over all the checkpoints of all the nodes, but
|
|
only loads the blobs specified in the blob_names to the current
|
|
workspace.
|
|
|
|
Args:
|
|
blob_names: A list of strings. Each string is the name of a
|
|
blob.
|
|
epoch: An integer. The checkpoint epoch to load from.
|
|
session: A Session object to execute the load ops.
|
|
|
|
Raises:
|
|
ValueError: When the checkpoint manager is invalid.
|
|
"""
|
|
if not self.checkpoint:
|
|
raise ValueError('Checkpoint manager is None')
|
|
logger.info('Loading checkpoint for epoch {} ...'.format(epoch))
|
|
self.checkpoint.load_blobs_locally(self.job.nodes_to_checkpoint(),
|
|
blob_names, epoch, session)
|
|
logger.info('Checkpoint loaded.')
|
|
|
|
|
|
def epoch_limiter(num_epochs):
|
|
"""
|
|
Creates a task that will output True when a given
|
|
number of epochs has finished.
|
|
"""
|
|
with Job.current().init_group:
|
|
init_net = core.Net('epoch_counter_init')
|
|
counter = init_net.CreateCounter([], init_count=num_epochs - 1)
|
|
Task(step=init_net)
|
|
epoch_net = core.Net('epoch_countdown')
|
|
finished = epoch_net.CountDown(counter)
|
|
output = Task(step=epoch_net, outputs=finished).outputs()[0]
|
|
Job.current().add_stop_signal(output)
|