mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/67803 * Addresses comments from #63589 [ONNX] remove torch::onnx::PRODUCER_VERSION (#67107) Use constants from version.h instead. This simplifies things since we no longer have to update PRODUCER_VERSION for each release. Also add TORCH_VERSION to version.h so that a string is available for this purpose. [ONNX] Set `ir_version` based on opset_version. (#67128) This increases the odds that the exported ONNX model will be usable. Before this change, we were setting the IR version to a value which may be higher than what the model consumer supports. Also some minor clean-up in the test code: * Fix string replacement. * Use a temporary file so as to not leave files around in the test current working directory. Test Plan: Imported from OSS Reviewed By: msaroufim Differential Revision: D32181306 Pulled By: malfet fbshipit-source-id: 02f136d34ef8f664ade0bc1985a584f0e8c2b663 Co-authored-by: BowenBao <bowbao@microsoft.com> Co-authored-by: Gary Miguel <garymiguel@microsoft.com> Co-authored-by: Nikita Shulga <nshulga@fb.com>
375 lines
15 KiB
Python
375 lines
15 KiB
Python
# Owner(s): ["module: onnx"]
|
|
|
|
from test_pytorch_common import TestCase, run_tests
|
|
|
|
import torch
|
|
import torch.onnx
|
|
from torch.nn import Module
|
|
|
|
import onnx
|
|
|
|
import io
|
|
|
|
from torch.onnx.symbolic_helper import _export_onnx_opset_version
|
|
from torch.onnx import producer_name, producer_version
|
|
|
|
|
|
def check_onnx_opset_operator(model, ops, opset_version=_export_onnx_opset_version):
|
|
# check_onnx_components
|
|
assert (
|
|
model.producer_name == producer_name and
|
|
model.producer_version == producer_version and
|
|
model.opset_import[0].version == opset_version)
|
|
|
|
# check the schema with the onnx checker
|
|
onnx.checker.check_model(model)
|
|
|
|
# check target type and attributes
|
|
graph = model.graph
|
|
# ops should contain an object for each node
|
|
# in graph.node, in the right order.
|
|
# At least the op_name should be specified,
|
|
# but the op's attributes can optionally be
|
|
# specified as well
|
|
assert len(ops) == len(graph.node)
|
|
for i in range(0, len(ops)):
|
|
assert graph.node[i].op_type == ops[i]["op_name"]
|
|
if "attributes" in ops[i] :
|
|
attributes = ops[i]["attributes"]
|
|
assert len(attributes) == len(graph.node[i].attribute)
|
|
for j in range(0, len(attributes)):
|
|
for attribute_field in attributes[j].keys():
|
|
assert attributes[j][attribute_field] == getattr(graph.node[i].attribute[j], attribute_field)
|
|
|
|
|
|
def check_onnx_opsets_operator(module, x, ops, opset_versions, training=torch.onnx.TrainingMode.EVAL,
|
|
input_names=None, dynamic_axes=None):
|
|
for opset_version in opset_versions:
|
|
f = io.BytesIO()
|
|
torch.onnx.export(module, x, f,
|
|
opset_version=opset_version,
|
|
training=training,
|
|
input_names=input_names,
|
|
dynamic_axes=dynamic_axes)
|
|
model = onnx.load(io.BytesIO(f.getvalue()))
|
|
check_onnx_opset_operator(model, ops[opset_version], opset_version)
|
|
|
|
|
|
class TestONNXOpset(TestCase):
|
|
|
|
def test_opset_fallback(self):
|
|
class MyModule(Module):
|
|
def forward(self, x):
|
|
return torch.isnan(x)
|
|
|
|
ops = [{"op_name" : "IsNaN"}]
|
|
ops = {9 : ops, 10 : ops}
|
|
x = torch.tensor([1.0, float("nan"), 2.0])
|
|
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
|
|
|
|
def test_topk(self):
|
|
class MyModule(Module):
|
|
def forward(self, x):
|
|
return torch.topk(x, 3)
|
|
|
|
ops_9 = [{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2},
|
|
{"name": "k", "i": 3, "type": 2}]}]
|
|
ops_10 = [{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2}]}]
|
|
ops = {9: ops_9, 10: ops_10}
|
|
x = torch.arange(1., 6., requires_grad=True)
|
|
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
|
|
|
|
# test with dynamic k
|
|
class MyModuleDynamic(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, input, k):
|
|
return torch.topk(input, k)
|
|
|
|
ops_10 = [{"op_name": "Constant", "attributes": [{"name": "value", "type": 4}]},
|
|
{"op_name": "Reshape"},
|
|
{"op_name": "TopK", "attributes": [{"name": "axis", "i": -1, "type": 2}]}]
|
|
ops = {10: ops_10}
|
|
x = torch.arange(1., 6., requires_grad=True)
|
|
k = torch.tensor(3)
|
|
module = MyModuleDynamic()
|
|
check_onnx_opsets_operator(module, [x, k], ops,
|
|
opset_versions=[10])
|
|
|
|
def test_maxpool(self):
|
|
module = torch.nn.MaxPool1d(2, stride=1)
|
|
|
|
ops_9 = [{"op_name" : "MaxPool",
|
|
"attributes" :
|
|
[{"name": "kernel_shape", "ints": [2], "type": 7},
|
|
{"name": "pads", "ints": [0, 0], "type": 7},
|
|
{"name": "strides", "ints": [1], "type": 7}]}]
|
|
ops_10 = [{"op_name" : "MaxPool",
|
|
"attributes" :
|
|
[{"name": "ceil_mode", "i": 0, "type": 2},
|
|
{"name": "kernel_shape", "ints": [2], "type": 7},
|
|
{"name": "pads", "ints": [0, 0], "type": 7},
|
|
{"name": "strides", "ints": [1], "type": 7}]}]
|
|
ops = {9 : ops_9, 10 : ops_10}
|
|
x = torch.randn(20, 16, 50)
|
|
check_onnx_opsets_operator(module, x, ops, opset_versions=[9, 10])
|
|
|
|
# add test with dilations
|
|
module = torch.nn.MaxPool1d(2, stride=1, dilation=2)
|
|
|
|
ops_10 = [{"op_name" : "MaxPool",
|
|
"attributes" :
|
|
[{"name": "ceil_mode", "i": 0, "type": 2},
|
|
{"name": "dilations", "ints": [2], "type": 7},
|
|
{"name": "kernel_shape", "ints": [2], "type": 7},
|
|
{"name": "pads", "ints": [0, 0], "type": 7},
|
|
{"name": "strides", "ints": [1], "type": 7}]}]
|
|
ops = {10 : ops_10}
|
|
x = torch.randn(20, 16, 50)
|
|
check_onnx_opsets_operator(module, x, ops, opset_versions=[10])
|
|
|
|
def test_upsample(self):
|
|
class MyModule(Module):
|
|
def __init__(self):
|
|
super(MyModule, self).__init__()
|
|
|
|
def forward(self, x):
|
|
size = [v * 2 for v in x.size()[2:]]
|
|
size = [int(i) for i in size]
|
|
return torch.nn.functional.interpolate(x, size=size, mode="nearest")
|
|
|
|
module = MyModule()
|
|
ops8 = [{"op_name" : "Upsample", "attributes" : [{"name": "mode", "s": ("nearest").encode(), "type": 3},
|
|
{"name": "scales", "floats": [1.0, 1.0, 2.0, 2.0], "type": 6}]}]
|
|
ops9 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Upsample", "attributes" : [{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
|
|
ops = {8 : ops8, 9 : ops9}
|
|
x = torch.randn(2, 2, 2, 2)
|
|
check_onnx_opsets_operator(module, x, ops, opset_versions=[8, 9])
|
|
|
|
def test_cast_constant(self):
|
|
class MyModule(Module):
|
|
def __init__(self):
|
|
super(MyModule, self).__init__()
|
|
|
|
def forward(self, x):
|
|
return x - 1
|
|
|
|
module = MyModule()
|
|
ops_8 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Cast", "attributes": [{"name": "to", "i": 7, "type": 2}]},
|
|
{"op_name" : "Sub"}]
|
|
ops_9 = [{"op_name" : "Constant"}, {"op_name" : "Sub"}]
|
|
ops = {8 : ops_8, 9 : ops_9}
|
|
x = torch.ones(5, 6, dtype=torch.long)
|
|
check_onnx_opsets_operator(module, x, ops, opset_versions=[8, 9])
|
|
|
|
def test_slice(self):
|
|
class MyModule(Module):
|
|
def forward(self, x):
|
|
return x[0:1]
|
|
|
|
ops_9 = [{"op_name" : "Slice",
|
|
"attributes" :
|
|
[{"name": "axes", "ints": [0], "type": 7},
|
|
{"name": "ends", "ints": [1], "type": 7},
|
|
{"name": "starts", "ints": [0], "type": 7}]}]
|
|
ops_10 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Slice",
|
|
"attributes" : []}]
|
|
ops = {9 : ops_9, 10 : ops_10}
|
|
x = torch.randn(3)
|
|
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
|
|
|
|
class DynamicSliceModel(torch.jit.ScriptModule):
|
|
@torch.jit.script_method
|
|
def forward(self, x):
|
|
return x[1:x.size(0)]
|
|
|
|
module = DynamicSliceModel()
|
|
x = torch.rand(1, 2)
|
|
ops_10 = [{"op_name" : "Shape"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Gather",
|
|
"attributes" : [{"name" : "axis", "i" : 0, "type" : 2}]},
|
|
{"op_name" : "Unsqueeze",
|
|
"attributes" : [{"name" : "axes", "i" : 0, "type" : 7}]},
|
|
{"op_name": "Constant"},
|
|
{"op_name" : "Slice",
|
|
"attributes" : []}]
|
|
ops = {10 : ops_10}
|
|
check_onnx_opsets_operator(module, x, ops, opset_versions=[10],
|
|
input_names=['x'], dynamic_axes={"x": [0, 1]})
|
|
|
|
ops_10 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Slice",
|
|
"attributes" : []}]
|
|
ops = {10 : ops_10}
|
|
check_onnx_opsets_operator(module, x, ops, opset_versions=[10])
|
|
|
|
def test_flip(self):
|
|
class MyModule(Module):
|
|
def forward(self, x):
|
|
return torch.flip(x, dims=[0])
|
|
|
|
ops_10 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Slice",
|
|
"attributes" : []}]
|
|
ops = {10 : ops_10}
|
|
import numpy
|
|
x = torch.tensor(numpy.arange(6.0).reshape(2, 3))
|
|
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[10])
|
|
|
|
def test_dropout(self):
|
|
class MyModule(Module):
|
|
def __init__(self):
|
|
super(MyModule, self).__init__()
|
|
self.dropout = torch.nn.Dropout(0.5)
|
|
|
|
def forward(self, x):
|
|
return self.dropout(x)
|
|
|
|
x = torch.randn(1, 2, 3)
|
|
|
|
# we should only export the onnx Dropout op in training mode; test both modes
|
|
|
|
# test training mode
|
|
ops = [{"op_name" : "Dropout", "attributes" : [{"name" : "ratio", "f" : 0.5, "type" : 1}]}]
|
|
ops = {9 : ops, 10 : ops}
|
|
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10], training=torch.onnx.TrainingMode.TRAINING)
|
|
|
|
# test eval mode
|
|
ops = [{"op_name" : "Identity"}]
|
|
ops = {9 : ops, 10 : ops}
|
|
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10], training=torch.onnx.TrainingMode.EVAL)
|
|
|
|
def test_full(self):
|
|
class MyModule(Module):
|
|
def forward(self, x):
|
|
return torch.full((3, 4), x)
|
|
|
|
ops = [{"op_name" : "Constant"},
|
|
{"op_name" : "ConstantOfShape"},
|
|
{"op_name" : "Add"}]
|
|
ops = {9 : ops, 10 : ops}
|
|
x = torch.tensor(12.)
|
|
check_onnx_opsets_operator(MyModule(), x, ops, opset_versions=[9, 10])
|
|
|
|
def test_interpolate(self):
|
|
class MyModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
size = [v * 2 for v in x.size()[2:]]
|
|
return torch.nn.functional.interpolate(x,
|
|
size=size,
|
|
mode="nearest")
|
|
ops_9 = [{"op_name" : "Shape"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Gather"},
|
|
{"op_name" : "Shape"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Gather"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Mul"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Mul"},
|
|
{"op_name" : "Unsqueeze"},
|
|
{"op_name" : "Unsqueeze"},
|
|
{"op_name" : "Concat"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Cast"},
|
|
{"op_name" : "Shape"},
|
|
{"op_name" : "Slice"},
|
|
{"op_name" : "Cast"},
|
|
{"op_name" : "Div"},
|
|
{"op_name" : "Concat"},
|
|
{"op_name" : "Upsample",
|
|
"attributes" :
|
|
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
|
|
ops_10 = [{"op_name" : "Shape"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Gather"},
|
|
{"op_name" : "Shape"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Gather"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Mul"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Mul"},
|
|
{"op_name" : "Unsqueeze"},
|
|
{"op_name" : "Unsqueeze"},
|
|
{"op_name" : "Concat"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Cast"},
|
|
{"op_name" : "Shape"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Slice"},
|
|
{"op_name" : "Cast"},
|
|
{"op_name" : "Div"},
|
|
{"op_name" : "Concat"},
|
|
{"op_name" : "Resize",
|
|
"attributes" :
|
|
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
|
|
|
|
ops = {9 : ops_9, 10 : ops_10}
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
check_onnx_opsets_operator(MyModel(), x, ops, opset_versions=[9, 10],
|
|
input_names=["x"], dynamic_axes={"x": [0, 1, 2, 3]})
|
|
|
|
ops_9 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Shape"},
|
|
{"op_name" : "Slice"},
|
|
{"op_name" : "Cast"},
|
|
{"op_name" : "Div"},
|
|
{"op_name" : "Concat"},
|
|
{"op_name" : "Upsample",
|
|
"attributes" :
|
|
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
|
|
ops_10 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Shape"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Constant"},
|
|
{"op_name" : "Slice"},
|
|
{"op_name" : "Cast"},
|
|
{"op_name" : "Div"},
|
|
{"op_name" : "Concat"},
|
|
{"op_name" : "Resize"}]
|
|
|
|
ops = {9 : ops_9, 10 : ops_10}
|
|
x = torch.randn(1, 2, 3, 4, requires_grad=True)
|
|
check_onnx_opsets_operator(MyModel(), x, ops, opset_versions=[9, 10])
|
|
|
|
class MyDynamicModel(torch.nn.Module):
|
|
def forward(self, x):
|
|
size = [v * 2 for v in x.size()[2:]]
|
|
# work around for now: turn the dynamic sizes into constant
|
|
size = [int(i) for i in size]
|
|
return torch.nn.functional.interpolate(x,
|
|
size=size,
|
|
mode="nearest")
|
|
ops_9 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Upsample",
|
|
"attributes" :
|
|
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
|
|
ops_10 = [{"op_name" : "Constant"},
|
|
{"op_name" : "Resize",
|
|
"attributes" :
|
|
[{"name": "mode", "s": ("nearest").encode(), "type": 3}]}]
|
|
ops = {9 : ops_9, 10 : ops_10}
|
|
x = torch.randn(20, 16, 50)
|
|
check_onnx_opsets_operator(MyDynamicModel(), x, ops, opset_versions=[9, 10])
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|