mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
Summary: Closes https://github.com/caffe2/caffe2/pull/1260 Differential Revision: D5906739 Pulled By: Yangqing fbshipit-source-id: e482ba9ba60b5337d9165f28f7ec68d4518a0902
83 lines
2.6 KiB
Python
83 lines
2.6 KiB
Python
# Copyright (c) 2016-present, Facebook, Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
##############################################################################
|
|
|
|
from __future__ import absolute_import
|
|
from __future__ import division
|
|
from __future__ import print_function
|
|
from __future__ import unicode_literals
|
|
|
|
from caffe2.python import core
|
|
|
|
import numpy as np
|
|
|
|
|
|
class ParameterTags(object):
|
|
BIAS = 'BIAS'
|
|
WEIGHT = 'WEIGHT'
|
|
COMPUTED_PARAM = 'COMPUTED_PARAM'
|
|
|
|
|
|
class ParameterType(object):
|
|
DENSE = 'dense'
|
|
SPARSE = 'sparse'
|
|
|
|
|
|
class ParameterInfo(object):
|
|
|
|
def __init__(
|
|
self, param_id, param, key=None, shape=None, length=None,
|
|
grad=None, blob_copy=None):
|
|
assert isinstance(param, core.BlobReference)
|
|
self.param_id = param_id
|
|
self.name = str(param)
|
|
self.blob = param
|
|
self.key = key
|
|
self.shape = shape
|
|
self.size = None if shape is None else np.prod(shape)
|
|
self.length = max(1, length if length is not None else 1)
|
|
self.grad = grad
|
|
self._cloned_init_net = None
|
|
# Optionally store equivalent copies of the blob
|
|
# in different precisions (i.e. half and float copies)
|
|
# stored as a dict of TensorProto.DataType -> BlobReference
|
|
self.blob_copy = blob_copy
|
|
# each param_info can have its own optimizer. It can be set within
|
|
# OptimizerContext (caffe2/python/optimizer.py)
|
|
self._optimizer = None
|
|
|
|
def grad_type(self):
|
|
# self.grad could be None for model parallelism with parameter server
|
|
if self.grad is None:
|
|
return
|
|
return (
|
|
ParameterType.SPARSE if isinstance(self.grad, core.GradientSlice)
|
|
else ParameterType.DENSE)
|
|
|
|
@property
|
|
def parameter(self):
|
|
return self.blob
|
|
|
|
@property
|
|
def optimizer(self):
|
|
return self._optimizer
|
|
|
|
@optimizer.setter
|
|
def optimizer(self, value):
|
|
assert self._optimizer is None, "optimizer has already been set"
|
|
self._optimizer = value
|
|
|
|
def __str__(self):
|
|
return self.name
|