pytorch/benchmarks
karthickai 725bbb6b5f [inductor][dynamo] Include operator name in size/stride/alignment assertion (#152353)
Fixes #151930

This PR updates the `assert_size_stride` and `assert_alignment` functions in [guards.cpp](https://github.com/pytorch/pytorch/blob/main/torch/csrc/dynamo/guards.cpp) to accept an optional `op_name` argument and includes it in the error messages.

The corresponding type stubs in [guards.pyi](https://github.com/pytorch/pytorch/blob/main/torch/_C/_dynamo/guards.pyi) are updated to match the new function arg.

In [inductor/ir.py](https://github.com/pytorch/pytorch/blob/main/torch/_inductor/ir.py) extracts the operator name from the FX graph and passes it into the `codegen_size_asserts` and `codegen_alignment_asserts` functions, so that generated assertions in Triton code include the op name for better debugging.

Added unit tests inside [test_torchinductor.py](https://github.com/pytorch/pytorch/blob/main/test/inductor/test_torchinductor.py).
- Verified both successful and failing assertion cases include the operator name.
- Verified that generated Triton code contains the op name inside the asserts.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/152353
Approved by: https://github.com/jansel
2025-05-15 02:33:57 +00:00
..
distributed/ddp [BE] Remove outdated RPC benchmark (#146716) 2025-03-29 04:44:36 +00:00
dynamo [inductor][dynamo] Include operator name in size/stride/alignment assertion (#152353) 2025-05-15 02:33:57 +00:00
fastrnns [BE]: Enable ruff rule SIM113 (#147290) 2025-02-16 22:41:16 +00:00
framework_overhead_benchmark Fix unused Python variables outside torch/ and test/ (#136359) 2024-12-11 17:10:23 +00:00
functional_autograd_benchmark Fix broken URLs (#152237) 2025-04-27 09:56:42 +00:00
fuser Fix unused Python variables outside torch/ and test/ (#136359) 2024-12-11 17:10:23 +00:00
gpt_fast [BE][CI] bump ruff to 0.9.2: multiline assert statements (#144546) 2025-02-27 20:46:16 +00:00
inductor_backends [cutlass backend] add addmm and bmm for cutlass backend benchmark (#152163) 2025-04-28 20:16:17 +00:00
inference [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754) 2024-07-17 14:34:42 +00:00
instruction_counts [BE][CI] bump ruff to 0.9.2: multiline assert statements (#144546) 2025-02-27 20:46:16 +00:00
nested Fix unused Python variables outside torch/ and test/ (#136359) 2024-12-11 17:10:23 +00:00
operator_benchmark Fix broken URLs (#152237) 2025-04-27 09:56:42 +00:00
overrides_benchmark [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754) 2024-07-17 14:34:42 +00:00
profiler_benchmark Apply TorchFix TOR203 fixes (#143691) 2024-12-23 18:21:03 +00:00
record_function_benchmark [Caffe2]Remove Caffe2 scripts and benchmarks (#126747) 2024-06-05 23:46:31 +00:00
serialization Fix unused Python variables outside torch/ and test/ (#136359) 2024-12-11 17:10:23 +00:00
sparse Clean up conda usage in benchmark scripts (#152552) 2025-04-30 21:27:29 +00:00
static_runtime [3/N] Use internal linkage in C++ files (#151297) 2025-05-05 17:48:39 +00:00
tensorexpr Fix broken URLs (#152237) 2025-04-27 09:56:42 +00:00
transformer Add sparsity (#148513) 2025-03-07 01:47:52 +00:00
compare-fastrnn-results.py [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754) 2024-07-17 14:34:42 +00:00
compare.sh
README.md Add more child links to benchmark readme (#104627) 2023-07-06 12:11:00 +00:00
upload_scribe.py Fix broken URLs (#152237) 2025-04-27 09:56:42 +00:00

PyTorch Benchmarks

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite. Links are provided where descriptions exist: