pytorch/torch/_inductor/fx_utils.py
Peter Bell 001585f446 [fx][inductor] Add statically_known_true utility for SymBool (#117359)
This adds a function `statically_known_true` for `SymBool` that works
like inductor's `is_expr_static_and_true`. That is, it tries to simplify the
expression to a constant or returns `False` if it cannot be simplified.

This is useful in cases that can be optimized if the condition is met,
otherwise it doesn't effect correctness so we can avoid adding guards.

I also use this new function in inductor for `FakeTensorUpdater` and
`remove_noop_pass` which both generated unexpected guards previously.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/117359
Approved by: https://github.com/lezcano
2024-01-15 18:01:10 +00:00

188 lines
6.6 KiB
Python

from collections import defaultdict
from typing import Any, Callable, DefaultDict, Dict, Optional, Tuple, Type
import torch
import torch.fx
from torch.fx.experimental.symbolic_shapes import statically_known_true, sym_eq
from torch.utils import _pytree as pytree
from torch.utils._pytree import tree_map
from .virtualized import V
# Check the pattern: (nn.module, F.function/torch.Tensor.method) matched.
# Works for length 2 patterns with 1 module and 1 function/method.
def matches_module_function_pattern(
pattern: Tuple[Type[torch.nn.modules.Module], Callable[..., Any]],
node: torch.fx.node.Node,
modules: Dict[str, torch.nn.modules.Module],
) -> bool:
if len(node.args) == 0:
return False
if not isinstance(node.args[0], torch.fx.Node) or not isinstance(
node, torch.fx.Node
):
return False
# the first node is call_module
if node.args[0].op != "call_module":
return False
if not isinstance(node.args[0].target, str):
return False
if node.args[0].target not in modules:
return False
if type(modules[node.args[0].target]) is not pattern[0]:
return False
# the second node is call_function or call_method
if node.op != "call_function" and node.op != "call_method":
return False
if node.target != pattern[1]:
return False
# make sure node.args[0] output is only used by current node.
if len(node.args[0].users) > 1:
return False
return True
class FakeTensorUpdater:
"""
The main idea here is that it's difficult to maintain accurate fake
tensors (our primary form of metadata) for each node in our graph as we
transform it.
The most reliable way to obtain this information is by rerunning
faketensor propagation. However, in general, faketensor propagation is
fairly expensive. So, instead we'd like to only rerun faketensor
propagation on nodes that have changed.
In order to detect which nodes have changed, we first hash its node,
target, and argument lists (which are immutable in FX).
Then, whenever we call incremental_update, we check which FX nodes have a
new hash, and recompute the faketensor metadata for that node. Then, we
continue to recursively compute the faketensors for all users until the
fake tensors stop changing.
"""
def __init__(self, graph: torch.fx.Graph):
self.processed_hashes = set()
self.graph = graph
for node in self.graph.nodes:
self.processed_hashes.add(self.hash_node(node))
def hash_node(self, node: torch.fx.Node):
# todo(chilli): Not a great hash function
return (node, node.target, id(node.args), id(node.kwargs))
def incremental_update(self):
processed = set()
existing_storages: DefaultDict[Optional[int], int] = defaultdict(int)
for node in self.graph.nodes:
existing_storages[get_node_storage(node)] += 1
def is_intlist_same(new, old):
return statically_known_true(sym_eq(new, old))
def is_fake_tensor_same(new, old):
if type(new) != type(old):
return False
if isinstance(new, (list, tuple)):
if len(new) != len(old):
return False
return all(
is_fake_tensor_same(new_i, old_i) for new_i, old_i in zip(new, old)
)
assert isinstance(new, torch.Tensor)
if not is_intlist_same(new.shape, old.shape) or new.layout != old.layout:
return False
if new.layout == torch.strided and (
not is_intlist_same(new.stride(), old.stride())
or not statically_known_true(
new.storage_offset() == old.storage_offset()
)
):
return False
if get_storage(new) == get_storage(old):
return True
# This is the case where it returns a completely fresh storage that's used nowhere else.
if (
existing_storages[get_storage(old)] == 1
and get_storage(new) not in existing_storages
):
return True
return False
for node in self.graph.nodes:
if self.hash_node(node) in self.processed_hashes:
continue
def is_aten_node(node):
return node.op == "call_function" and isinstance(
node.target, torch._ops.OpOverload
)
if not is_aten_node(node):
continue
processing = [node]
while len(processing) > 0:
updating_node = processing.pop()
if updating_node in processed:
continue
if is_aten_node(updating_node):
continue
is_valid, args, kwargs = get_fake_args_kwargs(updating_node)
if not is_valid:
continue
with V.fake_mode:
new_fake_tensor = updating_node.target(*args, **kwargs)
if "val" in updating_node.meta and is_fake_tensor_same(
new_fake_tensor, updating_node.meta["val"]
):
continue
updating_node.meta["val"] = new_fake_tensor
# todo(chilli): This code path is not exercised by our existing
# tests - add a test
existing_storages[get_node_storage(new_fake_tensor)] += 1
processed.add(updating_node)
processing.extend(updating_node.users)
self.processed_hashes.add(self.hash_node(updating_node))
def get_storage(t: torch.Tensor) -> int:
return t.untyped_storage()._cdata
def get_node_storage(node: torch.fx.Node) -> Optional[int]:
if "val" not in node.meta:
return None
if not isinstance(node.meta["val"], torch.Tensor):
return None
if not torch._C._has_storage(node.meta["val"]):
return None
return get_storage(node.meta["val"])
def get_fake(x):
if isinstance(x, torch.fx.Node):
if "val" not in x.meta:
return x
return x.meta["val"]
return x
def get_fake_args_kwargs(x: torch.fx.Node) -> Tuple[bool, Tuple[Any], Dict[str, Any]]:
"""
First value returns a boolean if any of the input nodes don't have a faketensor.
"""
args, kwargs = tree_map(get_fake, (x.args, x.kwargs))
if any(
isinstance(a, torch.fx.Node) for a in pytree.arg_tree_leaves(*args, **kwargs)
):
return False, args, kwargs
return True, args, kwargs