pytorch/torch/quantization/__init__.py
Jerry Zhang b2f489dc57 [quant][graphmode] Rename graph mode quantization API to quantize_jit (#40212)
Summary: Pull Request resolved: https://github.com/pytorch/pytorch/pull/40212

Test Plan: Imported from OSS

Reviewed By: z-a-f

Differential Revision: D22144745

fbshipit-source-id: 38a19b5afdddbbce262eea8ddf5b68458e6017b3
2020-06-19 18:13:37 -07:00

38 lines
1.3 KiB
Python

from __future__ import absolute_import, division, print_function, unicode_literals
from .quantize import *
from .observer import *
from .qconfig import *
from .fake_quantize import *
from .fuse_modules import fuse_modules
from .stubs import *
from .quantize_jit import *
def default_eval_fn(model, calib_data):
r"""
Default evaluation function takes a torch.utils.data.Dataset or a list of
input Tensors and run the model on the dataset
"""
for data, target in calib_data:
model(data)
_all__ = [
'QuantWrapper', 'QuantStub', 'DeQuantStub',
# Top level API for eager mode quantization
'quantize', 'quantize_dynamic', 'quantize_qat',
'prepare', 'convert', 'prepare_qat',
# Top level API for graph mode quantization
'quantize_jit', 'quantize_dynamic_jit',
# Sub functions for `prepare` and `swap_module`
'propagate_qconfig_', 'add_quant_dequant', 'add_observer_', 'swap_module',
'default_eval_fn', 'get_observer_dict',
# Observers
'ObserverBase', 'WeightObserver', 'observer', 'default_observer',
'default_weight_observer',
# QConfig
'QConfig', 'default_qconfig', 'default_dynamic_qconfig', 'float16_dynamic_qconfig',
# QAT utilities
'default_qat_qconfig', 'prepare_qat', 'quantize_qat',
# module transformations
'fuse_modules',
]