pytorch/torch/cuda/nccl.py
SsnL d5236f8517 Avoid initializing unnecessary tensors in nccl.reduce (#39688)
Summary:
While working on https://github.com/pytorch/pytorch/issues/38911, I realized that `nccl.reduce` only needs a single output tensor, while our current implementation requires a list of output tensors. This, along with a TODO I fixed in reduce_add, should have some speed up for data parallel.
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39688

Differential Revision: D22034547

Pulled By: mrshenli

fbshipit-source-id: e74d54d673ebbb062474b1bb5cc93a095a3a5f6c
2020-06-14 10:11:32 -07:00

86 lines
2.7 KiB
Python

import warnings
import torch._six
import torch.cuda
__all__ = ['all_reduce', 'reduce', 'broadcast', 'all_gather', 'reduce_scatter']
SUM = 0 # ncclRedOp_t
def is_available(tensors):
if not hasattr(torch._C, '_nccl_all_reduce'):
warnings.warn('PyTorch is not compiled with NCCL support')
return False
devices = set()
for tensor in tensors:
if tensor.is_sparse:
return False
if not tensor.is_contiguous():
return False
if not tensor.is_cuda:
return False
device = tensor.get_device()
if device in devices:
return False
devices.add(device)
return True
def version():
return torch._C._nccl_version()
def unique_id():
return torch._C._nccl_unique_id()
def init_rank(num_ranks, uid, rank):
return torch._C._nccl_init_rank(num_ranks, uid, rank)
def all_reduce(inputs, outputs=None, op=SUM, streams=None, comms=None):
if outputs is None:
outputs = inputs
torch._C._nccl_all_reduce(inputs, outputs, op, streams, comms)
# `output` used to be `outputs`, taking in a list of tensors. So we have two
# arguments for BC reasons.
def reduce(inputs, output=None, root=0, op=SUM, streams=None, comms=None, *, outputs=None):
if outputs is not None:
if output is not None:
raise ValueError(
"'output' and 'outputs' can not be both specified. 'outputs' is deprecated in "
"favor of 'output', taking in a single output tensor. The signature of reduce is: "
"reduce(inputs, output=None, root=0, op=SUM, streams=None, comms=None).")
else:
warnings.warn(
"nccl.reduce with an output tensor list is deprecated. "
"Please specify a single output tensor with argument 'output' instead instead.")
output = outputs[root]
elif not isinstance(output, torch.Tensor) and isinstance(output, torch._six.container_abcs.Sequence):
# User called old API with positional arguments of list of output tensors.
warnings.warn(
"nccl.reduce with an output tensor list is deprecated. "
"Please specify a single output tensor.")
output = output[root]
elif output is None:
output = inputs[root]
torch._C._nccl_reduce(inputs, output, root, op, streams, comms)
def broadcast(inputs, root=0, streams=None, comms=None):
torch._C._nccl_broadcast(inputs, root, streams, comms)
def all_gather(inputs, outputs, streams=None, comms=None):
torch._C._nccl_all_gather(inputs, outputs, streams, comms)
def reduce_scatter(inputs, outputs, op=SUM, streams=None, comms=None):
torch._C._nccl_reduce_scatter(inputs, outputs, op, streams, comms)