mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 00:21:07 +01:00
This PR: - renames `torch.set_deterministic` to `torch._set_deterministic` - renames `torch.is_deterministic` to `torch._is_deterministic` - Modifies the docstrings for both to indicate that the feature is not yet complete. We would like to do this because this feature is experimental and the docstrings before this PR are misleading. This PR does not have an accompanying change in master. That is because there still is discussion over what the eventual state of the feature should be: https://github.com/pytorch/pytorch/issues/15359. I expect that there will be a better plan for this once 1.7 rolls around. Test Plan: - wait for CI
537 lines
18 KiB
Python
537 lines
18 KiB
Python
|
|
r"""
|
|
The torch package contains data structures for multi-dimensional
|
|
tensors and mathematical operations over these are defined.
|
|
Additionally, it provides many utilities for efficient serializing of
|
|
Tensors and arbitrary types, and other useful utilities.
|
|
|
|
It has a CUDA counterpart, that enables you to run your tensor computations
|
|
on an NVIDIA GPU with compute capability >= 3.0.
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
import platform
|
|
import ctypes
|
|
|
|
if sys.version_info < (3,):
|
|
raise Exception("Python 2 has reached end-of-life and is no longer supported by PyTorch.")
|
|
|
|
from ._utils import _import_dotted_name
|
|
from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \
|
|
USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS
|
|
from .version import __version__
|
|
from ._six import string_classes as _string_classes
|
|
|
|
from typing import Set, Type
|
|
|
|
__all__ = [
|
|
'typename', 'is_tensor', 'is_storage', 'set_default_tensor_type',
|
|
'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed',
|
|
'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul',
|
|
'no_grad', 'enable_grad', 'rand', 'randn',
|
|
'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage',
|
|
'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage',
|
|
'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor',
|
|
'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor',
|
|
'lobpcg', '_set_deterministic', '_is_deterministic'
|
|
]
|
|
|
|
################################################################################
|
|
# Load the extension module
|
|
################################################################################
|
|
|
|
if sys.platform == 'win32':
|
|
pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files')
|
|
py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin')
|
|
th_dll_path = os.path.join(os.path.dirname(__file__), 'lib')
|
|
|
|
# When users create a virtualenv that inherits the base environment,
|
|
# we will need to add the corresponding library directory into
|
|
# DLL search directories. Otherwise, it will rely on `PATH` which
|
|
# is dependent on user settings.
|
|
if sys.exec_prefix != sys.base_exec_prefix:
|
|
base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin')
|
|
else:
|
|
base_py_dll_path = ''
|
|
|
|
dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path]))
|
|
|
|
if all([not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths]):
|
|
nvtoolsext_dll_path = os.path.join(
|
|
os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64')
|
|
else:
|
|
nvtoolsext_dll_path = ''
|
|
|
|
from .version import cuda as cuda_version
|
|
import glob
|
|
if cuda_version and all([not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths]):
|
|
cuda_version_1 = cuda_version.replace('.', '_')
|
|
cuda_path_var = 'CUDA_PATH_V' + cuda_version_1
|
|
default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version)
|
|
cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin')
|
|
else:
|
|
cuda_path = ''
|
|
|
|
dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path]))
|
|
|
|
kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
|
|
with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
|
|
prev_error_mode = kernel32.SetErrorMode(0x0001)
|
|
|
|
kernel32.LoadLibraryW.restype = ctypes.c_void_p
|
|
if with_load_library_flags:
|
|
kernel32.AddDllDirectory.restype = ctypes.c_void_p
|
|
kernel32.LoadLibraryExW.restype = ctypes.c_void_p
|
|
|
|
for dll_path in dll_paths:
|
|
if sys.version_info >= (3, 8):
|
|
os.add_dll_directory(dll_path)
|
|
elif with_load_library_flags:
|
|
res = kernel32.AddDllDirectory(dll_path)
|
|
if res is None:
|
|
err = ctypes.WinError(ctypes.get_last_error())
|
|
err.strerror += ' Error adding "{}" to the DLL directories.'.format(dll_path)
|
|
raise err
|
|
|
|
try:
|
|
ctypes.CDLL('vcruntime140.dll')
|
|
ctypes.CDLL('msvcp140.dll')
|
|
if cuda_version not in ('9.2', '10.0'):
|
|
ctypes.CDLL('vcruntime140_1.dll')
|
|
except OSError:
|
|
print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure.
|
|
It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''')
|
|
|
|
dlls = glob.glob(os.path.join(th_dll_path, '*.dll'))
|
|
path_patched = False
|
|
for dll in dlls:
|
|
is_loaded = False
|
|
if with_load_library_flags:
|
|
res = kernel32.LoadLibraryExW(dll, None, 0x00001100)
|
|
last_error = ctypes.get_last_error()
|
|
if res is None and last_error != 126:
|
|
err = ctypes.WinError(last_error)
|
|
err.strerror += ' Error loading "{}" or one of its dependencies.'.format(dll)
|
|
raise err
|
|
elif res is not None:
|
|
is_loaded = True
|
|
if not is_loaded:
|
|
if not path_patched:
|
|
os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']])
|
|
path_patched = True
|
|
res = kernel32.LoadLibraryW(dll)
|
|
if res is None:
|
|
err = ctypes.WinError(ctypes.get_last_error())
|
|
err.strerror += ' Error loading "{}" or one of its dependencies.'.format(dll)
|
|
raise err
|
|
|
|
kernel32.SetErrorMode(prev_error_mode)
|
|
|
|
|
|
# See Note [Global dependencies]
|
|
def _load_global_deps():
|
|
if platform.system() == 'Windows':
|
|
return
|
|
|
|
lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so')
|
|
here = os.path.abspath(__file__)
|
|
lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name)
|
|
|
|
ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
|
|
|
|
|
|
if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \
|
|
platform.system() != 'Windows':
|
|
# Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a
|
|
# few circumstances:
|
|
#
|
|
# 1. You're in a build environment (e.g., fbcode) where
|
|
# libtorch_global_deps is not available, but you still need
|
|
# to get mkl to link in with RTLD_GLOBAL or it will just
|
|
# not work.
|
|
#
|
|
# 2. You're trying to run PyTorch under UBSAN and you need
|
|
# to ensure that only one copy of libtorch is loaded, so
|
|
# vptr checks work properly
|
|
#
|
|
# If you're using this setting, you must verify that all the libraries
|
|
# you load consistently use the same libstdc++, or you may have
|
|
# mysterious segfaults.
|
|
#
|
|
import os as _dl_flags
|
|
if not hasattr(_dl_flags, 'RTLD_GLOBAL') or not hasattr(_dl_flags, 'RTLD_LAZY'):
|
|
try:
|
|
# next try if DLFCN exists
|
|
import DLFCN as _dl_flags # type: ignore
|
|
except ImportError:
|
|
# as a last attempt, use compile-time constants
|
|
import torch._dl as _dl_flags # type: ignore
|
|
old_flags = sys.getdlopenflags()
|
|
sys.setdlopenflags(_dl_flags.RTLD_GLOBAL | _dl_flags.RTLD_LAZY)
|
|
from torch._C import *
|
|
sys.setdlopenflags(old_flags)
|
|
del old_flags
|
|
del _dl_flags
|
|
|
|
else:
|
|
# Easy way. You want this most of the time, because it will prevent
|
|
# C++ symbols from libtorch clobbering C++ symbols from other
|
|
# libraries, leading to mysterious segfaults.
|
|
#
|
|
# If building in an environment where libtorch_global_deps isn't available
|
|
# like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will
|
|
# want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False
|
|
#
|
|
# See Note [Global dependencies]
|
|
if USE_GLOBAL_DEPS:
|
|
_load_global_deps()
|
|
from torch._C import *
|
|
|
|
# Appease the type checker; ordinarily this binding is inserted by the
|
|
# torch._C module initialization code in C
|
|
if False:
|
|
import torch._C as _C
|
|
|
|
__all__ += [name for name in dir(_C)
|
|
if name[0] != '_' and
|
|
not name.endswith('Base')]
|
|
|
|
################################################################################
|
|
# Define basic utilities
|
|
################################################################################
|
|
|
|
|
|
def typename(o):
|
|
if isinstance(o, torch.Tensor):
|
|
return o.type()
|
|
|
|
module = ''
|
|
class_name = ''
|
|
if hasattr(o, '__module__') and o.__module__ != 'builtins' \
|
|
and o.__module__ != '__builtin__' and o.__module__ is not None:
|
|
module = o.__module__ + '.'
|
|
|
|
if hasattr(o, '__qualname__'):
|
|
class_name = o.__qualname__
|
|
elif hasattr(o, '__name__'):
|
|
class_name = o.__name__
|
|
else:
|
|
class_name = o.__class__.__name__
|
|
|
|
return module + class_name
|
|
|
|
|
|
def is_tensor(obj):
|
|
r"""Returns True if `obj` is a PyTorch tensor.
|
|
|
|
Note that this function is simply doing ``isinstance(obj, Tensor)``.
|
|
Using that ``isinstance`` check is better for typechecking with mypy,
|
|
and more explicit - so it's recommended to use that instead of
|
|
``is_tensor``.
|
|
|
|
Args:
|
|
obj (Object): Object to test
|
|
"""
|
|
return isinstance(obj, torch.Tensor)
|
|
|
|
|
|
def is_storage(obj):
|
|
r"""Returns True if `obj` is a PyTorch storage object.
|
|
|
|
Args:
|
|
obj (Object): Object to test
|
|
"""
|
|
return type(obj) in _storage_classes
|
|
|
|
|
|
def set_default_tensor_type(t):
|
|
r"""Sets the default ``torch.Tensor`` type to floating point tensor type
|
|
``t``. This type will also be used as default floating point type for
|
|
type inference in :func:`torch.tensor`.
|
|
|
|
The default floating point tensor type is initially ``torch.FloatTensor``.
|
|
|
|
Args:
|
|
t (type or string): the floating point tensor type or its name
|
|
|
|
Example::
|
|
|
|
>>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32
|
|
torch.float32
|
|
>>> torch.set_default_tensor_type(torch.DoubleTensor)
|
|
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
|
|
torch.float64
|
|
|
|
"""
|
|
if isinstance(t, _string_classes):
|
|
t = _import_dotted_name(t)
|
|
_C._set_default_tensor_type(t)
|
|
|
|
|
|
def set_default_dtype(d):
|
|
r"""Sets the default floating point dtype to :attr:`d`.
|
|
This dtype is:
|
|
1. The inferred dtype for python floats in :func:`torch.tensor`.
|
|
2. Used to infer dtype for python complex numbers. The default complex dtype is set to
|
|
``torch.complex128`` if default floating point dtype is ``torch.float64``,
|
|
otherwise it's set to ``torch.complex64``
|
|
|
|
The default floating point dtype is initially ``torch.float32``.
|
|
|
|
Args:
|
|
d (:class:`torch.dtype`): the floating point dtype to make the default
|
|
|
|
Example::
|
|
>>> # initial default for floating point is torch.float32
|
|
>>> torch.tensor([1.2, 3]).dtype
|
|
torch.float32
|
|
>>> # initial default for floating point is torch.complex64
|
|
>>> torch.tensor([1.2, 3j]).dtype
|
|
torch.complex64
|
|
>>> torch.set_default_dtype(torch.float64)
|
|
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
|
|
torch.float64
|
|
>>> torch.tensor([1.2, 3j]).dtype # a new complex tensor
|
|
torch.complex128
|
|
|
|
"""
|
|
_C._set_default_dtype(d)
|
|
|
|
def _set_deterministic(d):
|
|
r"""Sets a global flag to force all operations to use a deterministic
|
|
implementation if available. If an operation that does not have a
|
|
deterministic implementation is called while this setting is True, the
|
|
operation will throw a RuntimeError.
|
|
|
|
Note that deterministic operations tend to have worse performance than
|
|
non-deterministic operations.
|
|
|
|
Args:
|
|
d (:class:`bool`): If True, force operations to be deterministic.
|
|
If False, allow non-deterministic operations.
|
|
|
|
.. warning::
|
|
This feature is experimental and not complete. The above docstring
|
|
represents what the future behavior is intended to be. Right now,
|
|
`_set_deterministic` will only affect `torch.bmm` and convolution
|
|
operators.
|
|
"""
|
|
_C._set_deterministic(d)
|
|
|
|
def _is_deterministic():
|
|
r"""Returns True if the global deterministic flag is turned on and
|
|
operations are being forced to use a deterministic implementation.
|
|
|
|
.. warning::
|
|
This feature is experimental and not complete. The above docstring
|
|
represents what the future behavior is intended to be. Right now,
|
|
the global deterministic flag will only affect `torch.bmm` and
|
|
convolution operators.
|
|
"""
|
|
return _C._get_deterministic()
|
|
|
|
# If you edit these imports, please update torch/__init__.py.in as well
|
|
from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed
|
|
from .serialization import save, load
|
|
from ._tensor_str import set_printoptions
|
|
|
|
################################################################################
|
|
# Define Storage and Tensor classes
|
|
################################################################################
|
|
|
|
from .tensor import Tensor
|
|
from .storage import _StorageBase
|
|
|
|
|
|
class DoubleStorage(_C.DoubleStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class FloatStorage(_C.FloatStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class HalfStorage(_C.HalfStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class LongStorage(_C.LongStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class IntStorage(_C.IntStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class ShortStorage(_C.ShortStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class CharStorage(_C.CharStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class ByteStorage(_C.ByteStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class BoolStorage(_C.BoolStorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
class BFloat16Storage(_C.BFloat16StorageBase, _StorageBase):
|
|
pass
|
|
|
|
class ComplexDoubleStorage(_C.ComplexDoubleStorageBase, _StorageBase):
|
|
pass
|
|
|
|
class ComplexFloatStorage(_C.ComplexFloatStorageBase, _StorageBase):
|
|
pass
|
|
|
|
class QUInt8Storage(_C.QUInt8StorageBase, _StorageBase):
|
|
pass
|
|
|
|
class QInt8Storage(_C.QInt8StorageBase, _StorageBase):
|
|
pass
|
|
|
|
class QInt32Storage(_C.QInt32StorageBase, _StorageBase):
|
|
pass
|
|
|
|
|
|
_storage_classes = {
|
|
DoubleStorage, FloatStorage, LongStorage, IntStorage, ShortStorage,
|
|
CharStorage, ByteStorage, HalfStorage, BoolStorage, QUInt8Storage, QInt8Storage,
|
|
QInt32Storage, BFloat16Storage, ComplexFloatStorage, ComplexDoubleStorage
|
|
}
|
|
|
|
# The _tensor_classes set is initialized by the call to _C._initialize_tensor_type_bindings()
|
|
_tensor_classes: Set[Type] = set()
|
|
|
|
|
|
################################################################################
|
|
# Initialize extension
|
|
################################################################################
|
|
|
|
def manager_path():
|
|
if platform.system() == 'Windows':
|
|
return b""
|
|
path = get_file_path('torch', 'bin', 'torch_shm_manager')
|
|
prepare_multiprocessing_environment(get_file_path('torch'))
|
|
if not os.path.exists(path):
|
|
raise RuntimeError("Unable to find torch_shm_manager at " + path)
|
|
return path.encode('utf-8')
|
|
|
|
|
|
# Shared memory manager needs to know the exact location of manager executable
|
|
_C._initExtension(manager_path())
|
|
del manager_path
|
|
|
|
# Appease the type checker: it can't deal with direct setting of globals().
|
|
# Note that we will see "too many" functions when reexporting this way; there
|
|
# is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions
|
|
# so that this import is good enough
|
|
if False:
|
|
from torch._C._VariableFunctions import *
|
|
|
|
for name in dir(_C._VariableFunctions):
|
|
if name.startswith('__'):
|
|
continue
|
|
globals()[name] = getattr(_C._VariableFunctions, name)
|
|
__all__.append(name)
|
|
|
|
################################################################################
|
|
# Import interface functions defined in Python
|
|
################################################################################
|
|
|
|
# needs to be after the above ATen bindings so we can overwrite from Python side
|
|
from .functional import *
|
|
|
|
|
|
################################################################################
|
|
# Remove unnecessary members
|
|
################################################################################
|
|
|
|
del DoubleStorageBase
|
|
del FloatStorageBase
|
|
del LongStorageBase
|
|
del IntStorageBase
|
|
del ShortStorageBase
|
|
del CharStorageBase
|
|
del ByteStorageBase
|
|
del BoolStorageBase
|
|
del QUInt8StorageBase
|
|
del BFloat16StorageBase
|
|
del ComplexDoubleStorageBase
|
|
del ComplexFloatStorageBase
|
|
|
|
################################################################################
|
|
# Import most common subpackages
|
|
################################################################################
|
|
|
|
import torch.cuda
|
|
import torch.autograd
|
|
from torch.autograd import no_grad, enable_grad, set_grad_enabled
|
|
import torch.futures
|
|
import torch.nn
|
|
import torch.nn.intrinsic
|
|
import torch.nn.quantized
|
|
import torch.optim
|
|
import torch.multiprocessing
|
|
import torch.sparse
|
|
import torch.utils.backcompat
|
|
import torch.onnx
|
|
import torch.jit
|
|
import torch.hub
|
|
import torch.random
|
|
import torch.distributions
|
|
import torch.testing
|
|
import torch.backends.cuda
|
|
import torch.backends.mkl
|
|
import torch.backends.mkldnn
|
|
import torch.backends.openmp
|
|
import torch.backends.quantized
|
|
import torch.quantization
|
|
import torch.utils.data
|
|
import torch.__config__
|
|
import torch.__future__
|
|
|
|
_C._init_names(list(torch._storage_classes))
|
|
|
|
# attach docstrings to torch and tensor functions
|
|
from . import _torch_docs, _tensor_docs, _storage_docs
|
|
del _torch_docs, _tensor_docs, _storage_docs
|
|
|
|
|
|
def compiled_with_cxx11_abi():
|
|
r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""
|
|
return _C._GLIBCXX_USE_CXX11_ABI
|
|
|
|
|
|
# Import the ops "namespace"
|
|
from torch._ops import ops
|
|
from torch._classes import classes
|
|
|
|
# Import the quasi random sampler
|
|
import torch.quasirandom
|
|
|
|
# If you are seeing this, it means that this call site was not checked if
|
|
# the memory format could be preserved, and it was switched to old default
|
|
# behaviour of contiguous
|
|
legacy_contiguous_format = contiguous_format
|
|
|
|
# Register fork handler to initialize OpenMP in child processes (see gh-28389)
|
|
from torch.multiprocessing._atfork import register_after_fork
|
|
register_after_fork(torch.get_num_threads)
|
|
del register_after_fork
|
|
|
|
# Import tools that require fully imported torch (for applying
|
|
# torch.jit.script as a decorator, for instance):
|
|
from ._lobpcg import lobpcg
|
|
|
|
# These were previously defined in native_functions.yaml and appeared on the
|
|
# `torch` namespace, but we moved them to c10 dispatch to facilitate custom
|
|
# class usage. We add these lines here to preserve backward compatbility.
|
|
quantized_lstm = torch.ops.aten.quantized_lstm
|
|
quantized_gru = torch.ops.aten.quantized_gru
|