pytorch/benchmarks
Ilia Cherniavskii d8c384544e Destroy CUDA events after profiling (#39962)
Summary:
Pull Request resolved: https://github.com/pytorch/pytorch/pull/39962

Adding a simple wrapper with ref count for cuda event and
destroying cuda event after the last copy is destroyed

Test Plan: CI cuda profiler tests

Differential Revision: D22027092

Pulled By: ilia-cher

fbshipit-source-id: e0810388aa60b2291eb010896e13af1fad92e472
2020-06-23 10:44:39 -07:00
..
distributed/ddp Add distributed data parallel benchmark tool (#35198) 2020-04-08 15:07:03 -07:00
fastrnns [TensorExpr] Benchmarks: set up profiling executor and fuser according to the given arguments. (#38295) 2020-05-12 23:27:46 -07:00
framework_overhead_benchmark Fix spelling errors 2020-01-28 04:46:15 -08:00
operator_benchmark Port addmm, addbmm, addr to ATen (CUDA) (#38421) 2020-06-22 13:02:33 -07:00
overrides_benchmark [RELAND] Add __torch_function__ benchmarks (#36138) 2020-04-10 09:14:31 -07:00
profiler_benchmark Destroy CUDA events after profiling (#39962) 2020-06-23 10:44:39 -07:00
serialization [JIT] Make new zip serialization for torch save/load significantly (~70%) faster (#38379) 2020-05-29 01:56:18 -07:00
tensorexpr [TensorExpr] Fix imports in tensorexpr benchmarks. (#35830) 2020-04-01 14:23:33 -07:00
README.md Fix spelling errors 2020-01-28 04:46:15 -08:00

PyTorch Benchmarks

NOTE: This folder is currently work in progress.

This folder contains scripts that produce reproducible timings of various PyTorch features.

It also provides mechanisms to compare PyTorch with other frameworks.

Setup environment

Make sure you're on a machine with CUDA, torchvision, and pytorch installed. Install in the following order:

# Install torchvision. It comes with the pytorch stable release binary
conda install pytorch torchvision -c pytorch

# Install the latest pytorch master from source.
# It should supersede the installation from the release binary.
cd $PYTORCH_HOME
python setup.py build develop

# Check the pytorch installation version
python -c "import torch; print(torch.__version__)"

Benchmark List

Please refer to each subfolder to discover each benchmark suite