pytorch/torch/distributions/half_normal.py
Maggie Moss 154e4d36e9 Fix pyrelfy ignore syntax in distributions and ao (#166248)
Ensures existing pyrefly ignores only ignore the intended error code

pyrefly check
lintrunner

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166248
Approved by: https://github.com/oulgen
2025-10-26 22:13:48 +00:00

86 lines
2.4 KiB
Python

# mypy: allow-untyped-defs
import math
from typing import Optional, Union
import torch
from torch import inf, Tensor
from torch.distributions import constraints
from torch.distributions.normal import Normal
from torch.distributions.transformed_distribution import TransformedDistribution
from torch.distributions.transforms import AbsTransform
__all__ = ["HalfNormal"]
class HalfNormal(TransformedDistribution):
r"""
Creates a half-normal distribution parameterized by `scale` where::
X ~ Normal(0, scale)
Y = |X| ~ HalfNormal(scale)
Example::
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> m = HalfNormal(torch.tensor([1.0]))
>>> m.sample() # half-normal distributed with scale=1
tensor([ 0.1046])
Args:
scale (float or Tensor): scale of the full Normal distribution
"""
arg_constraints = {"scale": constraints.positive}
# pyrefly: ignore [bad-override]
support = constraints.nonnegative
has_rsample = True
# pyrefly: ignore [bad-override]
base_dist: Normal
def __init__(
self,
scale: Union[Tensor, float],
validate_args: Optional[bool] = None,
) -> None:
base_dist = Normal(0, scale, validate_args=False)
super().__init__(base_dist, AbsTransform(), validate_args=validate_args)
def expand(self, batch_shape, _instance=None):
new = self._get_checked_instance(HalfNormal, _instance)
return super().expand(batch_shape, _instance=new)
@property
def scale(self) -> Tensor:
return self.base_dist.scale
@property
def mean(self) -> Tensor:
return self.scale * math.sqrt(2 / math.pi)
@property
def mode(self) -> Tensor:
return torch.zeros_like(self.scale)
@property
def variance(self) -> Tensor:
return self.scale.pow(2) * (1 - 2 / math.pi)
def log_prob(self, value):
if self._validate_args:
self._validate_sample(value)
log_prob = self.base_dist.log_prob(value) + math.log(2)
log_prob = torch.where(value >= 0, log_prob, -inf)
return log_prob
def cdf(self, value):
if self._validate_args:
self._validate_sample(value)
return 2 * self.base_dist.cdf(value) - 1
def icdf(self, prob):
return self.base_dist.icdf((prob + 1) / 2)
def entropy(self):
return self.base_dist.entropy() - math.log(2)