pytorch/torch/csrc/jit/tensorexpr/eval.cpp
cyyever 24ca7e91e6 [1/N] Use internal linkage in torch/csrc C++ files. (#150930)
Turn more functions and variables into static if they are not used outside the cpp files. Unused functions are removed.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/150930
Approved by: https://github.com/Skylion007

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
2025-04-11 02:19:31 +00:00

1295 lines
40 KiB
C++

#include <torch/csrc/jit/tensorexpr/eval.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/tensorexpr/external_functions_core.h>
#include <torch/csrc/jit/tensorexpr/external_functions_registry.h>
#include <c10/util/irange.h>
#include <utility>
namespace torch::jit::tensorexpr {
static RegisterCodeGen<SimpleIREvaluator> ir_eval_codegen_reg("simple_ir_eval");
int64_t InterpValue::intValue() const {
#define TYPE_CASE(Type, Name) \
if (dtype_ == k##Name) { \
return int64_t{Name##values[0]}; \
}
AT_FORALL_INT_TYPES(TYPE_CASE);
#undef TYPE_CASE
throw unsupported_dtype();
return 0;
}
template <typename T>
static inline std::enable_if_t<std::is_integral_v<T>, T> mod_value(
T lhs,
T rhs) {
return lhs % rhs;
}
template <typename T>
static inline std::enable_if_t<std::is_floating_point_v<T>, T> mod_value(
T lhs,
T rhs) {
return std::fmod(lhs, rhs);
}
static inline bool mod_value(bool lhs, bool rhs) {
throw std::runtime_error("Attempted modulus of bool");
}
template <typename T>
static inline std::enable_if_t<std::is_integral_v<T>, T> div_value(
T lhs,
T rhs) {
TORCH_CHECK(rhs != 0, "Division by zero");
return lhs / rhs;
}
template <typename T>
static inline std::enable_if_t<std::is_floating_point_v<T>, T>
__ubsan_ignore_float_divide_by_zero__ div_value(T lhs, T rhs) {
return lhs / rhs;
}
static inline c10::Half div_value(c10::Half lhs, c10::Half rhs) {
return lhs / rhs;
}
static inline c10::BFloat16 div_value(c10::BFloat16 lhs, c10::BFloat16 rhs) {
return lhs / rhs;
}
class SimpleIREvaluatorImpl : public IRVisitor {
public:
SimpleIREvaluatorImpl() = default;
~SimpleIREvaluatorImpl() override = default;
void bindBuf(const BufPtr& buf, void* ptr) {
GRAPH_DEBUG("Binding ptr ", ptr, " with buf ", buf->name_hint());
buffer_mapping_[buf] = ptr;
}
void bindVar(const VarPtr& var, const InterpValue& val) {
eval_context_[var] = val;
GRAPH_DEBUG(
"Binding value ", val.intValue(), " with var ", var->name_hint());
}
InterpValue evaluateExpr(const ExprPtr& e) {
e->accept(this);
return value_;
}
InterpValue value() const {
return value_;
}
void clear() {
eval_context_.clear();
buffer_mapping_.clear();
internal_buffers_.clear();
}
TORCH_API void visit(const AddPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const SubPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const MulPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const DivPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const ModPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const MaxPtr& v) override {
visit_binary_op(v, v->propagate_nans());
}
TORCH_API void visit(const MinPtr& v) override {
visit_binary_op(v, v->propagate_nans());
}
TORCH_API void visit(const AndPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const OrPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const XorPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const LshiftPtr& v) override {
visit_binary_op(v);
}
TORCH_API void visit(const RshiftPtr& v) override {
visit_binary_op(v);
}
void visit(const CompareSelectPtr& v) override {
visit_compare_select_op(v, v->compare_select_op());
}
template <typename T>
typename std::enable_if_t<std::is_floating_point_v<T>, T> max_value(
T a,
T b) {
return std::isnan(a) ? a : (std::isnan(b) ? b : (a < b ? b : a));
}
template <typename T>
typename std::enable_if_t<!std::is_floating_point_v<T>, T> max_value(
T a,
T b) {
return a < b ? b : a;
}
template <typename T>
typename std::enable_if_t<std::is_floating_point_v<T>, T> min_value(
T a,
T b) {
return std::isnan(a) ? a : (std::isnan(b) ? b : (a < b ? a : b));
}
template <typename T>
typename std::enable_if_t<!std::is_floating_point_v<T>, T> min_value(
T a,
T b) {
return a < b ? a : b;
}
template <typename T>
InterpValue binary_op(
const InterpValue& lhs,
const InterpValue& rhs,
IRNodeType op_type) {
std::vector<T> lhs_v = lhs.as_vec<T>();
std::vector<T> rhs_v = rhs.as_vec<T>();
std::vector<T> result_v(lhs_v.size());
for (const auto i : c10::irange(lhs_v.size())) {
switch (op_type) {
case IRNodeType::kAdd:
result_v[i] = lhs_v[i] + rhs_v[i];
break;
case IRNodeType::kSub:
result_v[i] = lhs_v[i] - rhs_v[i];
break;
case IRNodeType::kMul:
result_v[i] = lhs_v[i] * rhs_v[i];
break;
case IRNodeType::kDiv:
result_v[i] = div_value(lhs_v[i], rhs_v[i]);
break;
case IRNodeType::kMod:
result_v[i] = mod_value(lhs_v[i], rhs_v[i]);
break;
case IRNodeType::kMax:
result_v[i] = max_value(lhs_v[i], rhs_v[i]);
break;
case IRNodeType::kMin:
result_v[i] = min_value(lhs_v[i], rhs_v[i]);
break;
default:
// TODO: change to a proper error report
throw std::runtime_error("invalid operator type");
}
}
return InterpValue(result_v);
}
template <typename T>
InterpValue bitwise_binary_op(
const InterpValue& lhs,
const InterpValue& rhs,
IRNodeType op_type) {
std::vector<T> lhs_v = lhs.as_vec<T>();
std::vector<T> rhs_v = rhs.as_vec<T>();
std::vector<T> result_v(lhs_v.size());
for (const auto i : c10::irange(lhs_v.size())) {
switch (op_type) {
case IRNodeType::kAnd:
result_v[i] = lhs_v[i] & rhs_v[i];
break;
case IRNodeType::kOr:
result_v[i] = lhs_v[i] | rhs_v[i];
break;
case IRNodeType::kXor:
result_v[i] = lhs_v[i] ^ rhs_v[i];
break;
default:
// TODO: change to a proper error report
throw std::runtime_error("invalid operator type");
}
}
return InterpValue(result_v);
}
template <typename T>
InterpValue shift_binary_op(
const InterpValue& lhs,
const InterpValue& rhs,
IRNodeType op_type) {
std::vector<T> lhs_v = lhs.as_vec<T>();
std::vector<T> rhs_v = rhs.as_vec<T>();
std::vector<T> result_v(lhs_v.size());
for (const auto i : c10::irange(lhs_v.size())) {
switch (op_type) {
case IRNodeType::kLshift: {
auto a = static_cast<std::make_unsigned_t<T>>(lhs_v[i]);
result_v[i] = a << rhs_v[i];
break;
}
case IRNodeType::kRshift:
result_v[i] = lhs_v[i] >> rhs_v[i];
break;
default:
// TODO: change to a proper error report
throw std::runtime_error("invalid operator type");
}
}
return InterpValue(result_v);
}
template <typename T, typename R>
InterpValue compare_select_op(
const InterpValue& lhs,
const InterpValue& rhs,
const InterpValue& retval1,
const InterpValue& retval2,
CompareSelectOperation cmp_op) {
std::vector<T> lhs_v = lhs.as_vec<T>();
std::vector<T> rhs_v = rhs.as_vec<T>();
std::vector<R> ret_val1_v = retval1.as_vec<R>();
std::vector<R> ret_val2_v = retval2.as_vec<R>();
std::vector<R> result_v(lhs_v.size());
for (const auto i : c10::irange(lhs_v.size())) {
switch (cmp_op) {
case CompareSelectOperation::kEQ:
result_v[i] = (lhs_v[i] == rhs_v[i]) ? ret_val1_v[i] : ret_val2_v[i];
break;
case CompareSelectOperation::kNE:
result_v[i] = (lhs_v[i] != rhs_v[i]) ? ret_val1_v[i] : ret_val2_v[i];
break;
case CompareSelectOperation::kGT:
result_v[i] = (lhs_v[i] > rhs_v[i]) ? ret_val1_v[i] : ret_val2_v[i];
break;
case CompareSelectOperation::kGE:
result_v[i] = (lhs_v[i] >= rhs_v[i]) ? ret_val1_v[i] : ret_val2_v[i];
break;
case CompareSelectOperation::kLT:
result_v[i] = (lhs_v[i] < rhs_v[i]) ? ret_val1_v[i] : ret_val2_v[i];
break;
case CompareSelectOperation::kLE:
result_v[i] = (lhs_v[i] <= rhs_v[i]) ? ret_val1_v[i] : ret_val2_v[i];
break;
default:
// TODO: change to a proper error report
throw std::runtime_error("invalid operator type");
}
}
return InterpValue(result_v);
}
template <
typename D,
std::enable_if_t<std::is_same_v<
decltype(detail::bin_op_deducer(std::declval<D>())),
void>>* = nullptr>
void visit_binary_op(NodePtr<D> v, bool option = false) {
v->lhs()->accept(this);
InterpValue lhs_v = value_;
v->rhs()->accept(this);
InterpValue rhs_v = value_;
if (lhs_v.dtype() != rhs_v.dtype()) {
throw malformed_input("bad dtype in binary op", v);
}
IRNodeType expr_type = v->expr_type();
if (expr_type == IRNodeType::kAnd || expr_type == IRNodeType::kOr ||
expr_type == IRNodeType::kXor) {
switch (lhs_v.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
value_ = bitwise_binary_op<Type>(lhs_v, rhs_v, expr_type); \
break;
AT_FORALL_INT_TYPES(TYPE_CASE);
#undef TYPE_CASE
case ScalarType::Bool:
value_ = bitwise_binary_op<unsigned char>(lhs_v, rhs_v, expr_type);
break;
default:
throw unsupported_dtype();
}
return;
}
if (expr_type == IRNodeType::kLshift || expr_type == IRNodeType::kRshift) {
switch (lhs_v.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
value_ = shift_binary_op<Type>(lhs_v, rhs_v, expr_type); \
break;
AT_FORALL_INT_TYPES(TYPE_CASE);
#undef TYPE_CASE
case ScalarType::Bool:
value_ = shift_binary_op<unsigned char>(lhs_v, rhs_v, expr_type);
break;
default:
throw unsupported_dtype();
}
return;
}
switch (lhs_v.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
value_ = binary_op<Type>(lhs_v, rhs_v, expr_type); \
break;
AT_FORALL_SCALAR_TYPES_AND2(Half, BFloat16, TYPE_CASE);
#undef TYPE_CASE
case ScalarType::Bool:
value_ = binary_op<unsigned char>(lhs_v, rhs_v, expr_type);
break;
default:
throw unsupported_dtype();
}
}
template <typename T>
InterpValue compare_select_op_helper(
const InterpValue& lhs,
const InterpValue& rhs,
const InterpValue& retval1,
const InterpValue& retval2,
CompareSelectOperation cmp_op) {
InterpValue value;
switch (retval1.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
value = compare_select_op<T, Type>(lhs, rhs, retval1, retval2, cmp_op); \
break;
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE)
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
return value;
}
void visit_compare_select_op(
const CompareSelectPtr& v,
CompareSelectOperation cmp_op) {
v->lhs()->accept(this);
InterpValue lhs_v = value_;
v->rhs()->accept(this);
InterpValue rhs_v = value_;
v->ret_val1()->accept(this);
InterpValue ret_val1_v = value_;
v->ret_val2()->accept(this);
InterpValue ret_val2_v = value_;
if (lhs_v.dtype() != rhs_v.dtype() ||
ret_val1_v.dtype() != ret_val2_v.dtype()) {
throw malformed_input("bad dtype in CompareSelect", v);
}
switch (lhs_v.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
value_ = compare_select_op_helper<Type>( \
lhs_v, rhs_v, ret_val1_v, ret_val2_v, cmp_op); \
break;
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE)
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
}
#define IMM_VISIT(Type, Name) \
TORCH_API void visit(const Name##ImmPtr& v) override { \
value_ = InterpValue(v->value()); \
}
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, IMM_VISIT)
#undef IMM_VISIT
TORCH_API void visit(const BlockPtr& v) override {
BlockPtr last = scope_;
scope_ = v;
for (const StmtPtr& s : v->stmts()) {
s->accept(this);
}
auto it = var_by_scope_.find(v);
if (it != var_by_scope_.end()) {
for (const ExprPtr& v : it->second) {
eval_context_.erase(v);
}
var_by_scope_.erase(it);
}
scope_ = last;
}
TORCH_API void visit(const VarPtr& v) override {
auto iter = eval_context_.find(v);
if (iter == eval_context_.end()) {
throw malformed_input("could not find Var in context", v);
}
value_ = iter->second;
}
// disable ubsan because sometimes this performs out-of-bound casts
// e.g. it will cast negative floats to unsigned char
template <typename SrcType, typename DstType>
std::vector<DstType> castValues(const Dtype& src_dtype, const InterpValue& v)
__ubsan_ignore_undefined__ {
const std::vector<SrcType>& src_values = v.as_vec<SrcType>();
std::vector<DstType> dst_values(src_values.size());
for (int i = 0; i < src_dtype.lanes(); ++i) {
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
dst_values[i] = static_cast<DstType>(underlyingValue(src_values[i]));
}
return dst_values;
}
template <typename SrcType>
void doCastFromSrc(
const Dtype& src_dtype,
const Dtype& dst_dtype,
const InterpValue& v) {
switch (dst_dtype.scalar_type()) {
#define DST_TYPE_CASE(Type, Name) \
case ScalarType::Name: \
this->value_ = InterpValue(castValues<SrcType, Type>(src_dtype, v)); \
break;
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, DST_TYPE_CASE)
#undef DST_TYPE_CASE
#define DST_TYPE_CASE_QUANT(Type, Name, CppType) \
case ScalarType::Name: { \
std::vector<CppType> vec = castValues<SrcType, CppType>(dst_dtype, v); \
std::vector<Type> qvec; \
qvec.reserve(vec.size()); \
for (CppType u : vec) { \
qvec.emplace_back(u); \
} \
this->value_ = InterpValue(qvec); \
} break;
DST_TYPE_CASE_QUANT(c10::quint8, QUInt8, uint8_t)
DST_TYPE_CASE_QUANT(c10::qint8, QInt8, int8_t)
#undef DST_TYPE_CASE_QUANT
default:
throw unsupported_dtype();
}
}
TORCH_API void visit(const CastPtr& v) override {
ExprPtr src_value = v->src_value();
src_value->accept(this);
Dtype dst_dtype = v->dtype();
Dtype src_dtype = src_value->dtype();
if (src_dtype.lanes() != dst_dtype.lanes()) {
throw malformed_input("lane mismatch in Cast", v);
}
if (src_dtype != dst_dtype) {
switch (src_dtype.scalar_type()) {
#define SRC_TYPE_CASE(Type, Name) \
case ScalarType::Name: \
doCastFromSrc<Type>(src_dtype, dst_dtype, value_); \
break;
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, SRC_TYPE_CASE)
SRC_TYPE_CASE(c10::quint8, QUInt8);
SRC_TYPE_CASE(c10::qint8, QInt8);
#undef SRC_TYPE_CASE
default:
throw unsupported_dtype();
}
}
}
template <typename SrcType, typename DstType>
std::vector<DstType> bitcastValues(
const Dtype& src_dtype,
const InterpValue& v) {
const std::vector<SrcType>& src_values = v.as_vec<SrcType>();
std::vector<DstType> dst_values(src_values.size());
for (int i = 0; i < src_dtype.lanes(); ++i) {
dst_values[i] = raw_bitcast<DstType>(src_values[i]);
}
return dst_values;
}
template <typename SrcType>
void doBitCastFromSrc(
const Dtype& src_dtype,
const Dtype& dst_dtype,
const InterpValue& v) {
switch (dst_dtype.scalar_type()) {
#define DST_TYPE_CASE(Type, Name) \
case ScalarType::Name: \
this->value_ = InterpValue(bitcastValues<SrcType, Type>(src_dtype, v)); \
break;
// bool/half not supported
AT_FORALL_SCALAR_TYPES(DST_TYPE_CASE);
#undef DST_TYPE_CASE
default:
throw unsupported_dtype();
}
}
TORCH_API void visit(const BitCastPtr& v) override {
ExprPtr src_value = v->src_value();
src_value->accept(this);
Dtype dst_dtype = v->dtype();
Dtype src_dtype = src_value->dtype();
if (src_dtype.byte_size() != dst_dtype.byte_size()) {
throw malformed_input("lane mismatch in Cast", v);
}
if (src_dtype != dst_dtype) {
switch (src_dtype.scalar_type()) {
#define SRC_TYPE_CASE(Type, Name) \
case ScalarType::Name: \
doBitCastFromSrc<Type>(src_dtype, dst_dtype, value_); \
break;
// bool/half not supported
AT_FORALL_SCALAR_TYPES(SRC_TYPE_CASE);
#undef SRC_TYPE_CASE
default:
throw unsupported_dtype();
}
}
}
TORCH_API void visit(const ForPtr& v) override {
ExprPtr var_node = v->var();
v->start()->accept(this);
auto dtype = value_.dtype();
auto start = value_.intValue();
v->stop()->accept(this);
auto stop = value_.intValue();
if (eval_context_.count(var_node)) {
throw malformed_input("could not find var_node in For context", v);
}
for (auto i = start; i < stop; i++) {
eval_context_[var_node] = InterpValue(dtype, i);
if (v->body()) {
v->body()->accept(this);
}
}
eval_context_.erase(var_node);
}
TORCH_API void visit(const RampPtr& v) override {
v->base()->accept(this);
auto base = value().intValue();
v->stride()->accept(this);
auto stride = value().intValue();
int lanes = v->lanes();
std::vector<int64_t> values(lanes);
for (const auto i : c10::irange(lanes)) {
values[i] = base + i * stride;
}
value_ = InterpValue(values);
}
TORCH_API void visit(const BroadcastPtr& v) override {
v->value()->accept(this);
InterpValue value = this->value();
int lanes = v->lanes();
switch (value.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: { \
std::vector<Type> v(lanes, value.as<Type>()); \
value_ = InterpValue(v); \
} break;
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE)
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
}
TORCH_API void visit(const IfThenElsePtr& v) override {
v->condition()->accept(this);
bool cond_v = false;
switch (value_.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: { \
cond_v = value_.as<Type>(); \
} break;
AT_FORALL_SCALAR_TYPES_AND(Bool, TYPE_CASE);
#undef TYPE_CASE
case ScalarType::Half:
throw unsupported_dtype("IfThenElse condition can't have Half dtype");
case ScalarType::BFloat16:
throw unsupported_dtype(
"IfThenElse condition can't have BFloat16 dtype");
default:
throw unsupported_dtype();
}
if (cond_v) {
v->true_value()->accept(this);
} else {
v->false_value()->accept(this);
}
}
template <typename T>
std::vector<int64_t> toLongVec(T&& t) {
return std::vector<int64_t>{std::begin(t), std::end(t)};
}
std::vector<int64_t> indexVec(const InterpValue& v) {
switch (v.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
return toLongVec(v.as_vec<Type>());
AT_FORALL_INT_TYPES(TYPE_CASE);
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
return {};
}
void check_bounds_throw(int64_t idx, int64_t bound, const BufPtr& buf) {
std::stringstream ss;
ss << "Index out of bounds in check_bounds. Index: " << idx
<< "; bounds: [0, " << bound << ").";
throw malformed_input(ss.str(), buf);
}
void check_bounds(const BufPtr& buf, const std::vector<ExprPtr>& indices) {
const std::vector<ExprPtr>& dims = buf->dims();
if (dims.size() != indices.size()) {
// indices are flattened, but not buffer
if (indices.size() == 1) {
if (dims.size() != buf->strides().size()) {
throw malformed_input(
"Number of dimensions did not match number of strides", buf);
}
int64_t buf_size = 1;
if (!dims.empty()) {
ExprHandle buf_size_expr = ExprHandle(immLike(dims[0], 1));
ExprHandle negative_one = ExprHandle(immLike(dims[0], -1));
for (const auto& i : c10::irange(dims.size())) {
buf_size_expr = buf_size_expr +
((negative_one + ExprHandle(dims[i])) *
ExprHandle(buf->strides()[i]));
}
buf_size_expr.node()->accept(this);
buf_size = value().intValue();
}
indices[0]->accept(this);
const auto& index_values = indexVec(value());
for (auto& j : index_values) {
if (j < 0 || j >= buf_size) {
check_bounds_throw(j, buf_size, buf);
}
}
return;
}
throw malformed_input(
"dimensions and indices mismatch in check_bounds. Buf has " +
std::to_string(dims.size()) + " dimensions and indices has " +
std::to_string(indices.size()) + " dimensions.",
buf);
}
for (const auto& i : c10::irange(dims.size())) {
auto opt_dim = intValue(dims[i]);
if (!opt_dim) {
continue;
}
auto dim_bound = *opt_dim;
indices[i]->accept(this);
const auto& ithDimIndices = indexVec(value());
for (auto& j : ithDimIndices) {
if (j < 0 || j >= dim_bound) {
check_bounds_throw(j, dim_bound, buf);
}
}
}
}
TORCH_API void visit(const LoadPtr& v) override {
auto iter = buffer_mapping_.find(v->buf());
if (iter == buffer_mapping_.end()) {
throw malformed_input("could not find base node in Load", v);
}
void* ptr = iter->second;
check_bounds(v->buf(), v->indices());
ExprPtr flat_idx =
flatten_index(v->buf()->dims(), v->indices(), v->buf()->strides());
flat_idx->accept(this);
auto index = indexVec(value());
ScalarType v_sdtype = v->dtype().scalar_type();
switch (v_sdtype) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: { \
Type* ptr##Name = static_cast<Type*>(ptr); \
std::vector<Type> val(index.size()); \
for (const auto i : c10::irange(index.size())) { \
val[i] = ptr##Name[index[i]]; \
GRAPH_DEBUG( \
"LOAD: ptr=", \
ptr##Name, \
", buf=", \
v->buf()->name_hint(), \
", idx=", \
index[i], \
", val=", \
(int)underlyingValue(val[i])); \
} \
value_ = InterpValue(val); \
} break;
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE)
TYPE_CASE(c10::quint8, QUInt8);
TYPE_CASE(c10::qint8, QInt8);
#undef TYPE_CASE
default:
throw unsupported_dtype("scalar type:" + std::to_string(v_sdtype));
}
}
TORCH_API void visit(const StorePtr& v) override {
auto iter = buffer_mapping_.find(v->buf());
if (iter == buffer_mapping_.end()) {
throw malformed_input("could not find base node in Store", v);
}
void* ptr = iter->second;
check_bounds(v->buf(), v->indices());
ExprPtr flat_idx =
flatten_index(v->buf()->dims(), v->indices(), v->buf()->strides());
flat_idx->accept(this);
auto index = indexVec(value());
ScalarType v_sdtype = v->value()->dtype().scalar_type();
switch (v_sdtype) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: { \
v->value()->accept(this); \
std::vector<Type> value = this->value().as_vec<Type>(); \
if (index.size() != value.size()) { \
throw malformed_input("value size mismatch in Store", v); \
} \
Type* ptr##Name = static_cast<Type*>(ptr); \
for (const auto i : c10::irange(index.size())) { \
GRAPH_DEBUG( \
"STORE: ptr=", \
ptr##Name, \
", buf=", \
v->buf()->name_hint(), \
", idx=", \
index[i], \
", val=", \
(int)underlyingValue(value[i])); \
ptr##Name[index[i]] = value[i]; \
} \
} break;
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE)
TYPE_CASE(c10::quint8, QUInt8);
TYPE_CASE(c10::qint8, QInt8);
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
}
void visit(const ExternalCallPtr& v) override {
auto& func_registry = getNNCFunctionRegistry();
if (!func_registry.count(v->func_name())) {
throw unimplemented_lowering(v);
}
GRAPH_DEBUG(
"EXTERNAL CALL: func=",
v->func_name(),
", buf=",
v->buf()->name_hint());
std::vector<BufPtr> bufs(v->buf_args());
bufs.insert(bufs.begin(), v->buf());
std::vector<void*> buf_ptrs;
std::vector<int64_t> buf_ranks;
std::vector<int64_t> buf_dims;
std::vector<int64_t> buf_strides;
std::vector<int8_t> buf_dtypes;
std::vector<int64_t> extra_args;
for (const BufPtr& b : bufs) {
auto iter = buffer_mapping_.find(b);
if (iter == buffer_mapping_.end()) {
throw malformed_input("could not find buf", v);
}
buf_ptrs.push_back(iter->second);
buf_ranks.push_back(b->dims().size());
buf_dtypes.push_back((int8_t)b->dtype().scalar_type());
for (const ExprPtr& dim_expr : b->dims()) {
dim_expr->accept(this);
buf_dims.push_back(value().intValue());
}
for (const ExprPtr& stride_expr : b->strides()) {
stride_expr->accept(this);
buf_strides.push_back(value().intValue());
}
}
for (const ExprPtr& a : v->args()) {
a->accept(this);
int64_t val = 0;
if (value().dtype() == kLong) {
val = value().as<int64_t>();
} else if (value().dtype() == kInt) {
val = value().intValue();
} else if (value().dtype() == kDouble) {
auto x = value().as<double>();
val = reinterpret_cast<int64_t*>(&x)[0];
} else if (value().dtype() == kFloat) {
auto x = value().as<float>();
val = reinterpret_cast<int64_t*>(&x)[0];
} else {
throw malformed_input(
"extra_args in ExternalCalls must have int64 dtype", v);
}
extra_args.push_back(val);
}
auto fn_ptr = func_registry.at(v->func_name());
(*fn_ptr)(
bufs.size(),
buf_ptrs.data(),
buf_ranks.data(),
buf_dims.data(),
buf_strides.data(),
buf_dtypes.data(),
extra_args.size(),
extra_args.data());
}
void visit(const ExternalCallWithAllocPtr& v) override {
auto& func_registry = getNNCFunctionRegistry();
if (!func_registry.count(v->func_name())) {
throw unimplemented_lowering(v);
}
GRAPH_DEBUG("EXTERNAL CALL: func=", v->func_name());
const auto& bufs_out = v->buf_out_args();
const auto& bufs_in = v->buf_args();
const auto bufs_in_size = bufs_in.size();
const auto bufs_out_size = bufs_out.size();
std::vector<void*> buf_ptrs(bufs_in_size + 2 * bufs_out_size);
std::vector<int64_t> buf_ranks;
std::vector<int64_t> buf_dims;
std::vector<int64_t> buf_strides;
std::vector<int8_t> buf_dtypes;
std::vector<int64_t> extra_args;
size_t i = 0;
for (const auto& b : bufs_in) {
auto iter = buffer_mapping_.find(b);
if (iter == buffer_mapping_.end()) {
throw malformed_input("could not find buf", v);
}
buf_ptrs[bufs_out_size + i] = iter->second;
// @lint-ignore CLANGTIDY
buf_ranks.push_back(b->dims().size());
buf_dtypes.push_back((int8_t)b->dtype().scalar_type());
for (const auto& dim_expr : b->dims()) {
dim_expr->accept(this);
buf_dims.push_back(value().intValue());
}
for (const ExprPtr& stride_expr : b->strides()) {
stride_expr->accept(this);
buf_strides.push_back(value().intValue());
}
i++;
}
for (const auto& a : v->args()) {
a->accept(this);
int64_t val = 0;
if (value().dtype() == kLong) {
val = value().as<int64_t>();
} else if (value().dtype() == kInt) {
val = value().intValue();
} else if (value().dtype() == kDouble) {
auto x = value().as<double>();
val = reinterpret_cast<int64_t*>(&x)[0];
} else if (value().dtype() == kFloat) {
auto x = value().as<float>();
val = reinterpret_cast<int64_t*>(&x)[0];
} else {
throw malformed_input(
"extra_args in ExternalCalls must have int64 dtype", v);
}
extra_args.push_back(val);
}
auto fn_ptr = func_registry.at(v->func_name());
(*fn_ptr)(
bufs_in_size,
buf_ptrs.data(),
buf_ranks.data(),
buf_dims.data(),
buf_strides.data(),
buf_dtypes.data(),
extra_args.size(),
extra_args.data());
for (i = 0; i < bufs_out_size; ++i) {
const auto& buf_out = bufs_out[i];
buffer_mapping_[buf_out] = buf_ptrs[i];
ext_bufs_free_ptr_[buf_out] = buf_ptrs[bufs_in_size + bufs_out_size + i];
}
}
template <typename TReturn, typename TInput>
void visit_intrinsics_helper(const IntrinsicsPtr& v) {
std::vector<InterpValue> values(v->nparams());
for (const auto i : c10::irange(v->nparams())) {
v->param(i)->accept(this);
values[i] = this->value();
}
std::vector<TInput> v1;
if (!values.empty()) {
v1 = values[0].as_vec<TInput>();
}
std::vector<TInput> v2;
if (values.size() >= 2ULL) {
v2 = values[1].as_vec<TInput>();
if (v1.size() != v2.size()) {
throw malformed_input("value size mismatch in Intrinsics", v);
}
}
if (values.size() > 2) {
throw unimplemented_lowering(v);
}
std::vector<TReturn> result(v1.size(), -1);
if (values.size() == 1ULL) {
for (const auto i : c10::irange(v1.size())) {
result[i] = compute_intrinsics<TReturn>(v->op_type(), v1[i]);
}
} else {
for (const auto i : c10::irange(v1.size())) {
result[i] = compute_intrinsics<TReturn>(v->op_type(), v1[i], v2[i]);
}
}
value_ = InterpValue(result);
}
TORCH_API void visit(const IntrinsicsPtr& v) override {
auto ty = v->dtype().scalar_type();
if (v->op_type() == kIsNan) {
auto inp_dtype = v->params().at(0)->dtype().scalar_type();
if (inp_dtype == ScalarType::Float) {
visit_intrinsics_helper<int, float>(v);
} else if (inp_dtype == ScalarType::Double) {
visit_intrinsics_helper<int, double>(v);
} else if (inp_dtype == ScalarType::Half) {
throw unsupported_dtype(); // TODO
} else if (inp_dtype == ScalarType::BFloat16) {
throw unsupported_dtype(); // TODO
}
} else {
switch (ty) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: \
visit_intrinsics_helper<Type, Type>(v); \
break;
AT_FORALL_SCALAR_TYPES(TYPE_CASE);
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
}
}
void visit(const AllocatePtr& v) override {
BufPtr b = v->buf();
std::vector<ExprPtr> dims = b->dims();
int64_t total_byte_size = b->dtype().byte_size();
for (auto& dim : dims) {
dim->accept(this);
total_byte_size *= value_.intValue();
}
auto int_count = (total_byte_size + sizeof(int) - 1) / sizeof(int);
GRAPH_DEBUG(
"ALLOCATE: buf=", v->buf()->name_hint(), ", size=", total_byte_size);
auto buffer = std::make_unique<std::vector<int>>(int_count);
auto iter = buffer_mapping_.find(b);
if (iter != buffer_mapping_.end() && iter->second != nullptr) {
throw std::runtime_error(
"Allocate a buffer that has already been allocated: " +
v->buffer_var()->name_hint());
}
buffer_mapping_[b] = buffer->data();
internal_buffers_.emplace(std::move(b), std::move(buffer));
}
void visit(const PlacementAllocatePtr& v) override {
buffer_mapping_[v->buf()] = buffer_mapping_.at(v->buf_to_reuse());
}
void visit(const FreePtr& v) override {
BufPtr b = v->buf();
GRAPH_DEBUG("FREE: buf=", v->buf()->name_hint());
auto count = internal_buffers_.erase(b);
if (count == 0) {
throw std::runtime_error(
"Free a buffer that is not currently bound: " +
v->buffer_var()->name_hint());
}
buffer_mapping_.erase(b);
}
void visit(const FreeExtPtr& v) override {
const auto& bufs = v->bufs();
const auto bufs_num = bufs.size();
std::vector<void*> buf_ptrs;
for (const auto& buf : bufs) {
if (!ext_bufs_free_ptr_.count(buf)) {
throw std::runtime_error(
"Free an external allocated buffer that does not have corresponding pointer for freeing: " +
buf->base_handle()->name_hint());
}
buf_ptrs.push_back(ext_bufs_free_ptr_[buf]);
}
nnc_aten_free(bufs_num, buf_ptrs.data());
}
void visit(const LetPtr& v) override {
var_by_scope_[scope_].push_back(v->var());
bindVar(v->var(), evaluateExpr(v->value()));
}
void visit(const CondPtr& v) override {
v->condition()->accept(this);
if (value().intValue()) {
if (v->true_stmt()) {
v->true_stmt()->accept(this);
}
} else {
if (v->false_stmt()) {
v->false_stmt()->accept(this);
}
}
}
private:
template <
typename TReturn,
typename TInput,
std::enable_if_t<std::is_floating_point_v<TInput>, int> = 0>
static TReturn compute_intrinsics(IntrinsicsOp op_type, TInput v) {
switch (op_type) {
case kSin:
return std::sin(v);
case kCos:
return std::cos(v);
case kTan:
return std::tan(v);
case kAsin:
return std::asin(v);
case kAcos:
return std::acos(v);
case kAtan:
return std::atan(v);
case kSinh:
return std::sinh(v);
case kCosh:
return std::cosh(v);
case kTanh:
return std::tanh(v);
case kExp:
return std::exp(v);
case kAbs:
return std::abs(v);
case kExpm1:
return std::expm1(v);
case kLog:
return std::log(v);
case kLog2:
return std::log2(v);
case kLog10:
return std::log10(v);
case kLog1p:
return std::log1p(v);
case kErf:
return std::erf(v);
case kErfc:
return std::erfc(v);
case kSqrt:
return std::sqrt(v);
case kRsqrt: {
auto rsqrt = [](TInput v) __ubsan_ignore_float_divide_by_zero__ {
return 1.0f / std::sqrt(v);
};
return rsqrt(v);
}
case kCeil:
return std::ceil(v);
case kFloor:
return std::floor(v);
case kRound:
return std::round(v);
case kTrunc:
return std::trunc(v);
case kLgamma:
return std::lgamma(v);
case kFrac:
TInput intpart;
return std::modf(v, &intpart);
case kIsNan:
return std::isnan(v);
default:
throw std::runtime_error("Invalid op_type: " + std::to_string(op_type));
}
}
template <
typename TReturn,
typename TInput,
std::enable_if_t<std::is_integral_v<TInput>, int> = 0>
static TReturn compute_intrinsics(IntrinsicsOp op_type, TInput v) {
switch (op_type) {
case kAbs: {
// internal tool complains about calling `abs` on unsigned, the
// following makes the tool happy
using X = std::conditional_t<std::is_unsigned_v<TInput>, int, TInput>;
return std::is_unsigned_v<TInput> ? v : std::abs(static_cast<X>(v));
}
default:
throw std::runtime_error(
"Invalid integral op_type: " + std::to_string(op_type));
}
}
// specialization for float -> int ops (just kIsNan currently)
int compute_intrinsics(IntrinsicsOp op_type, float v) {
switch (op_type) {
case kIsNan:
return std::isnan(v);
default:
throw std::runtime_error("Invalid op_type: " + std::to_string(op_type));
}
}
template <typename TReturn, typename TInput>
TReturn compute_intrinsics(IntrinsicsOp op_type, TInput v1, TInput v2) {
switch (op_type) {
case kPow:
return std::pow(v1, v2);
case kFmod:
return std::fmod(v1, v2);
case kRemainder:
return std::remainder(v1, v2);
case kAtan2:
return std::atan2(v1, v2);
default:
throw std::runtime_error("Invalid op_type: " + std::to_string(op_type));
}
}
InterpValue value_;
BlockPtr scope_;
std::unordered_map<ExprPtr, InterpValue> eval_context_;
std::unordered_map<BlockPtr, std::vector<ExprPtr>> var_by_scope_;
std::unordered_map<BufPtr, void*> buffer_mapping_;
std::unordered_map<BufPtr, std::unique_ptr<std::vector<int>>>
internal_buffers_;
std::unordered_map<BufPtr, void*> ext_bufs_free_ptr_;
};
SimpleIREvaluator::SimpleIREvaluator(
StmtPtr stmt,
const std::vector<BufferArg>& buffer_args,
at::Device device,
const std::string& kernel_func_name)
: CodeGen(std::move(stmt), buffer_args, device, kernel_func_name) {
impl_ = std::make_unique<SimpleIREvaluatorImpl>();
expand_intrinsics();
}
SimpleIREvaluator::~SimpleIREvaluator() = default;
void SimpleIREvaluator::call(const std::vector<CallArg>& args) {
std::vector<void*> raw_args(args.size());
for (size_t i = 0; i < args.size(); i++) {
auto const& bufferArg = buffer_args()[i];
auto const& callArg = args[i];
raw_args[i] = argToPtr(bufferArg, callArg);
}
call_raw(raw_args);
}
void SimpleIREvaluator::call_raw(const std::vector<void*>& args) {
if (args.size() != buffer_args().size()) {
throw malformed_input("bad args in IREvaluator call");
}
for (const auto i : c10::irange(args.size())) {
bindArg(buffer_args()[i], args[i]);
}
stmt()->accept(&*impl_);
impl_->clear();
}
void SimpleIREvaluator::bindArg(const BufferArg& bufArg, void* data) {
if (!bufArg.isVar()) {
impl_->bindBuf(bufArg.buf(), data);
return;
}
switch (bufArg.dtype().scalar_type()) {
#define TYPE_CASE(Type, Name) \
case ScalarType::Name: { \
Type typed_data; \
memcpy(&typed_data, data, sizeof(Type)); \
impl_->bindVar(bufArg.var(), typed_data); \
break; \
}
AT_FORALL_SCALAR_TYPES_AND3(Bool, Half, BFloat16, TYPE_CASE)
#undef TYPE_CASE
default:
throw unsupported_dtype();
}
}
void SimpleIREvaluator::bindVar(const VarPtr& v, const ExprPtr& e) {
impl_->bindVar(v, impl_->evaluateExpr(e));
}
InterpValue SimpleIREvaluator::value() const {
return impl_->value();
}
std::optional<int64_t> evalInt(ExprPtr e) {
try {
return ExprEval<SimpleIREvaluator>(cast<int64_t>(ExprHandle(std::move(e))))
.value<int64_t>();
} catch (std::runtime_error& err) {
return std::nullopt;
}
}
} // namespace torch::jit::tensorexpr