pytorch/torch/csrc/jit/passes/metal_rewrite.cpp

272 lines
11 KiB
C++

#include <ATen/core/jit_type.h>
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/passes/constant_pooling.h>
#include <torch/csrc/jit/passes/fold_conv_bn.h>
#include <torch/csrc/jit/passes/freeze_module.h>
#include <torch/csrc/jit/passes/fuse_linear.h>
#include <torch/csrc/jit/passes/graph_rewrite_helper.h>
#include <torch/csrc/jit/passes/metal_rewrite.h>
#include <torch/csrc/jit/passes/prepack_folding.h>
#include <torch/csrc/jit/passes/remove_dropout.h>
#include <torch/csrc/jit/passes/remove_mutation.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <torch/csrc/jit/runtime/graph_executor_impl.h>
namespace torch::jit {
namespace {
void insertPrePackedLinearOp(std::shared_ptr<Graph>& graph) {
// fuse decomposed linear into aten::linear
FuseLinear(graph);
std::string linear_pattern = R"(
graph(%input, %weight, %bias):
%r = aten::linear(%input, %weight, %bias)
return (%r))";
std::string prepacked_ops_pattern = R"(
graph(%input, %weight, %bias):
%output_min_max : None = prim::Constant()
%packed_weight_bias = metal_prepack::linear_prepack(
%weight, %bias, %output_min_max, %output_min_max)
%res = metal_prepack::linear_run(%input, %packed_weight_bias)
return (%res))";
SubgraphRewriter linear_rewriter;
linear_rewriter.RegisterRewritePattern(linear_pattern, prepacked_ops_pattern);
linear_rewriter.runOnGraph(graph);
}
void insertPrePackedConv2dOp(std::shared_ptr<Graph>& graph) {
graph_rewrite_helper::replaceConvolutionWithAtenConv(graph);
std::string conv_2d_pattern = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[], %dilation:int[], %groups:int):
%r = aten::conv2d(%input, %weight, %bias, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string prepacked_ops_conv2d_pattern = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int):
%output_min_max : None = prim::Constant()
%packed_weight_bias = metal_prepack::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min_max, %output_min_max)
%r = metal_prepack::conv2d_run(%input, %packed_weight_bias)
return (%r) )";
SubgraphRewriter rewriter;
rewriter.RegisterRewritePattern(
conv_2d_pattern, prepacked_ops_conv2d_pattern);
rewriter.runOnGraph(graph);
}
void fuseReluWithPackedOps(std::shared_ptr<Graph>& graph) {
SubgraphRewriter rewriter;
std::string linear_prepack_run_relu_fused = R"(
graph(%input, %weight, %bias, %dummy_min_max):
%output_min: float = prim::Constant[value=0.0]()
%output_max: None = prim::Constant()
%packed_weight_bias : __torch__.torch.classes.metal.LinearOpContext = metal_prepack::linear_prepack(
%weight, %bias, %output_min, %output_max)
%res = metal_prepack::linear_run(%input, %packed_weight_bias)
return (%res))";
std::string linear_prepack_run_relu = R"(
graph(%input, %weight, %bias, %dummy_min_max):
%packed_weight_bias = metal_prepack::linear_prepack(
%weight, %bias, %dummy_min_max, %dummy_min_max)
%linear_res = metal_prepack::linear_run(%input, %packed_weight_bias)
%res = aten::relu(%linear_res)
return (%res))";
rewriter.RegisterRewritePattern(
linear_prepack_run_relu, linear_prepack_run_relu_fused);
std::string conv2d_prepack_run_relu = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%packed_weight_bias = metal_prepack::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%r = metal_prepack::conv2d_run(%input, %packed_weight_bias)
%r = aten::relu(%r)
return (%r) )";
std::string conv2d_prepack_run_relu_fused = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%output_min: float = prim::Constant[value=0.0]()
%output_max: None = prim::Constant()
%packed_weight_bias: __torch__.torch.classes.metal.Conv2dOpContext = metal_prepack::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min, %output_max)
%r = metal_prepack::conv2d_run(%input, %packed_weight_bias)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_relu, conv2d_prepack_run_relu_fused);
std::string linear_prepack_run_relu_inplace = R"(
graph(%input, %weight, %bias, %dummy_min_max):
%packed_weight_bias = metal_prepack::linear_prepack(
%weight, %bias, %dummy_min_max, %dummy_min_max)
%linear_res = metal_prepack::linear_run(%input, %packed_weight_bias)
%res = aten::relu_(%linear_res)
return (%res))";
std::string conv2d_prepack_run_relu_inplace = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %dummy_min_max):
%packed_weight_bias = metal_prepack::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%r = metal_prepack::conv2d_run(%input, %packed_weight_bias)
%r = aten::relu_(%r)
return (%r) )";
rewriter.RegisterRewritePattern(
linear_prepack_run_relu_inplace, linear_prepack_run_relu_fused);
rewriter.RegisterRewritePattern(
conv2d_prepack_run_relu_inplace, conv2d_prepack_run_relu_fused);
rewriter.runOnGraph(graph, torch::jit::graph_rewrite_helper::isClampFusable);
}
void fuseHardtanhWithPackedOps(std::shared_ptr<Graph>& graph) {
SubgraphRewriter rewriter;
std::string linear_prepack_run_hardtanh_fused = R"(
graph(%input, %weight, %bias, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias : __torch__.torch.classes.metal.LinearOpContext = metal_prepack::linear_prepack(%weight, %bias, %output_min, %output_max)
%res = metal_prepack::linear_run(%input, %packed_weight_bias)
return (%res))";
std::string linear_prepack_run_hardtanh = R"(
graph(%input, %weight, %bias, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias = metal_prepack::linear_prepack(
%weight, %bias, %dummy_min_max, %dummy_min_max)
%linear_res = metal_prepack::linear_run(%input, %packed_weight_bias)
%res = aten::hardtanh(%linear_res, %output_min, %output_max)
return (%res))";
rewriter.RegisterRewritePattern(
linear_prepack_run_hardtanh, linear_prepack_run_hardtanh_fused);
std::string conv2d_prepack_run_hardtanh_fused = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias: __torch__.torch.classes.metal.Conv2dOpContext = metal_prepack::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%output_min, %output_max)
%r = metal_prepack::conv2d_run(%input, %packed_weight_bias)
return (%r) )";
std::string conv2d_prepack_run_hardtanh = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias = metal_prepack::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%r = metal_prepack::conv2d_run(%input, %packed_weight_bias)
%r = aten::hardtanh(%r, %output_min, %output_max)
return (%r) )";
rewriter.RegisterRewritePattern(
conv2d_prepack_run_hardtanh, conv2d_prepack_run_hardtanh_fused);
std::string conv2d_prepack_run_hardtanh_inplace = R"(
graph(%input, %weight, %bias, %stride:int[], %padding:int[],
%dilation:int[], %groups:int, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias = metal_prepack::conv2d_prepack(
%weight, %bias, %stride, %padding, %dilation, %groups,
%dummy_min_max, %dummy_min_max)
%r = metal_prepack::conv2d_run(%input, %packed_weight_bias)
%r = aten::hardtanh_(%r, %output_min, %output_max)
return (%r) )";
std::string linear_prepack_run_hardtanh_inplace = R"(
graph(%input, %weight, %bias, %output_min, %output_max, %dummy_min_max):
%packed_weight_bias = metal_prepack::linear_prepack(
%weight, %bias, %dummy_min_max, %dummy_min_max)
%linear_res = metal_prepack::linear_run(%input, %packed_weight_bias)
%res = aten::hardtanh_(%linear_res, %output_min, %output_max)
return (%res))";
rewriter.RegisterRewritePattern(
linear_prepack_run_hardtanh_inplace, linear_prepack_run_hardtanh_fused);
rewriter.RegisterRewritePattern(
conv2d_prepack_run_hardtanh_inplace, conv2d_prepack_run_hardtanh_fused);
rewriter.runOnGraph(graph, torch::jit::graph_rewrite_helper::isClampFusable);
}
} // namespace
void metalInsertPrePackedOps(std::shared_ptr<Graph>& graph) {
insertPrePackedLinearOp(graph);
insertPrePackedConv2dOp(graph);
}
void metalInsertPrePackedOps(script::Module& module) {
for (auto& method : module.get_methods()) {
auto graph = method.graph();
metalInsertPrePackedOps(graph);
}
for (script::Module m : module.children()) {
metalInsertPrePackedOps(m);
}
}
void metalFoldPrePackingOps(script::Module& m) {
PrePackingOpsFilterFn filter_fn = [](const Node* n) -> bool {
return (
(n->kind() ==
Symbol::fromQualString("metal_prepack::conv2d_prepack")) ||
(n->kind() == Symbol::fromQualString("metal_prepack::linear_prepack")));
};
PrePackingOpsFolder(m, filter_fn, "prepack_folding");
}
void metalFusePrePackedConvWithClamp(script::Module& module) {
auto graph = module.get_method("forward").graph();
fuseReluWithPackedOps(graph);
fuseHardtanhWithPackedOps(graph);
}
static void metalRemoveMutation(script::Module& module) {
auto graph = module.get_method("forward").graph();
RemoveTensorMutation(graph);
}
static void metalRunCanonicalOptimizations(script::Module& module) {
auto graph = module.get_method("forward").graph();
runOptimization(graph, false /* no loop unrolling */);
}
script::Module metalOptimizeForMobile(
const script::Module& m,
const std::vector<std::string>& preserved_methods) {
auto cloned_module = m.clone();
cloned_module.eval();
cloned_module = FoldConvBatchNorm(cloned_module);
metalInsertPrePackedOps(cloned_module);
cloned_module = freeze_module(cloned_module, preserved_methods);
metalFusePrePackedConvWithClamp(cloned_module);
metalFoldPrePackingOps(cloned_module);
removeDropout(cloned_module);
metalRemoveMutation(cloned_module);
// remove duplicated constants
metalRunCanonicalOptimizations(cloned_module);
cloned_module.register_attribute(
"optimized_for_metal", BoolType::get(), true);
return cloned_module;
}
} // namespace torch::jit