pytorch/torch/csrc/jit/passes/clear_profiling.cpp
cyy c764ef6d53 [9/N] Fix clang-tidy warnings in jit (#132010)
Follows  #131997

Co-authored-by: Aaron Gokaslan <aaronGokaslan@gmail.com>
Pull Request resolved: https://github.com/pytorch/pytorch/pull/132010
Approved by: https://github.com/Skylion007
2024-07-29 18:38:35 +00:00

48 lines
1.4 KiB
C++

#include <torch/csrc/jit/passes/clear_profiling.h>
#include <torch/csrc/jit/jit_log.h>
namespace torch::jit {
void unprofileGraphInputs(const std::shared_ptr<Graph>& graph) {
for (auto i : graph->inputs()) {
if (i->type()->isSubtypeOf(*TensorType::get())) {
i->setType(unshapedType(i->type()));
}
}
}
void unprofileBlock(Block* start_block) {
std::vector<Block*> stack;
stack.push_back(start_block);
while (!stack.empty()) {
Block* block = stack.back();
stack.pop_back();
for (auto n : block->nodes()) {
for (auto o : n->outputs()) {
if (o->type()->isSubtypeOf(*TensorType::get())) {
o->setType(unshapedType(o->type()));
}
}
stack.insert(stack.end(), n->blocks().begin(), n->blocks().end());
}
}
}
// We need to make sure that passes that use profiling information
// use it **only after** guards validating it are inserted
// Ideally, we would run any pass that relies on profiling information
// after `InsertBailOuts`, however, practically, some passes
// (e.g. Peephole) useful to run both w/ and w/o profiling information
// so we could run them in `preoptimizeGraph` and
// in `runProfilingInsensitiveOptimizations`
void ClearProfilingInformation(const std::shared_ptr<Graph>& graph) {
unprofileGraphInputs(graph);
unprofileBlock(graph->block());
GRAPH_DUMP("After ClearProfilingInformation: ", graph);
}
} // namespace torch::jit