pytorch/torch/csrc/dynamo/guards.h
PyTorch MergeBot 8580112682 Revert "[dynamo][DebugMode] mask python keys in dispatch_key_set guard checks (#164992)"
This reverts commit 306b344a18.

Reverted https://github.com/pytorch/pytorch/pull/164992 on behalf of https://github.com/jeffdaily due to broke ROCm CI test/inductor/test_inductor_scheduler.py::TestSchedulerCUDA::test_flop_counter_op_options0_cuda_float32 [GH job link](https://github.com/pytorch/pytorch/actions/runs/18417066364/job/52485636942) [HUD commit link](306b344a18) ([comment](https://github.com/pytorch/pytorch/pull/164992#issuecomment-3397927142))
2025-10-13 15:14:34 +00:00

92 lines
2.9 KiB
C++

#pragma once
#include <c10/core/GradMode.h>
#include <torch/csrc/dynamo/framelocals_mapping.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/utils/pybind.h>
namespace torch::dynamo {
PyObject* torch_c_dynamo_guards_init();
// interfaces for extra_state and eval_frame.c because RootGuardManager class is
// not visible there.
void* convert_to_root_guard_manager(py::object root);
bool run_root_guard_manager(void* root, FrameLocalsMapping* f_locals);
struct LocalState {
// TLS state that changes operators
c10::impl::LocalDispatchKeySet dispatch_modifier;
c10::DispatchKeySet override_dispatch_key_set;
bool grad_mode_enabled;
at::DispatchKeySet apply(at::DispatchKeySet ks) const {
if (override_dispatch_key_set.empty()) {
return (ks | dispatch_modifier.included_) - dispatch_modifier.excluded_;
} else {
return override_dispatch_key_set;
}
}
LocalState()
: dispatch_modifier(c10::impl::tls_local_dispatch_key_set()),
override_dispatch_key_set(c10::BackendComponent::InvalidBit),
grad_mode_enabled(at::GradMode::is_enabled()) {}
void overrideDispatchKeySet(c10::DispatchKeySet ks) {
override_dispatch_key_set = ks;
}
};
class TensorCheck {
public:
TensorCheck(
const LocalState& state,
PyTypeObject* pt,
const at::Tensor& v,
c10::DispatchKeySet dispatch_key_set,
std::vector<std::optional<c10::SymInt>> dynamic_dims_sizes,
std::vector<std::optional<c10::SymInt>> dynamic_dims_strides);
TensorCheck(
const LocalState& state,
PyTypeObject* pt,
c10::DispatchKeySet dispatch_key_set,
at::ScalarType dtype,
at::DeviceIndex device_index,
bool requires_grad,
std::vector<std::optional<c10::SymInt>> dynamic_dims_sizes,
std::vector<std::optional<c10::SymInt>> dynamic_dims_strides);
bool check(const LocalState& state, const at::Tensor& v);
bool check(
const LocalState& state,
const c10::DispatchKeySet& dispatch_key_set,
const at::ScalarType& dtype,
const c10::Device& device,
const c10::SymIntArrayRef& dynamic_dims_sizes,
const c10::SymIntArrayRef& dynamic_dims_strides,
const bool& requires_grad);
std::string check_verbose(
const LocalState& state,
const at::Tensor& v,
const std::string& tensor_name);
PyTypeObject* pytype;
private:
uint64_t dispatch_key_; // DispatchKeySet includes device/layout
at::ScalarType dtype_;
// Note(voz): While dispatch_key_ is sufficiently representative of a device
// In that keys are more granular AND device specific - they do not
// necessarily capture device indices correctly.
at::DeviceIndex device_index_;
bool requires_grad_;
// NB: These are unset if dynamic shapes is enabled.
std::vector<std::optional<c10::SymInt>> sizes_;
std::vector<std::optional<c10::SymInt>> strides_;
// Not strictly required for dense tensors, but nested tensors need it.
int64_t dim_;
};
} // namespace torch::dynamo