mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
Fixes #ISSUE_NUMBER Pull Request resolved: https://github.com/pytorch/pytorch/pull/133180 Approved by: https://github.com/albanD
46 lines
1.2 KiB
C++
46 lines
1.2 KiB
C++
#pragma once
|
|
|
|
#include <torch/csrc/Export.h>
|
|
#include <torch/csrc/autograd/function.h>
|
|
#include <torch/csrc/autograd/variable.h>
|
|
|
|
#include <ATen/ATen.h>
|
|
#include <c10/cuda/CUDAStream.h>
|
|
#include <optional>
|
|
|
|
#include <cstddef>
|
|
#include <vector>
|
|
|
|
namespace torch::autograd {
|
|
|
|
struct TORCH_CUDA_CU_API Scatter : public Node {
|
|
explicit Scatter(
|
|
std::vector<at::Device> devices,
|
|
std::optional<std::vector<int64_t>> chunk_sizes = std::nullopt,
|
|
int64_t dim = 0,
|
|
std::optional<std::vector<std::optional<at::cuda::CUDAStream>>> streams =
|
|
std::nullopt,
|
|
bool unsqueeze_scalars = false);
|
|
~Scatter() override;
|
|
|
|
variable_list apply(variable_list&& inputs) override;
|
|
|
|
std::vector<at::Device> devices_;
|
|
std::optional<std::vector<int64_t>> chunk_sizes_;
|
|
int64_t dim_;
|
|
std::optional<std::vector<std::optional<at::cuda::CUDAStream>>> streams_;
|
|
bool unsqueeze_scalars_;
|
|
};
|
|
|
|
struct TORCH_CUDA_CU_API Gather : public Node {
|
|
explicit Gather(const at::Device& destination_device, int64_t dim = 0);
|
|
~Gather() override;
|
|
|
|
variable_list apply(variable_list&& inputs) override;
|
|
|
|
at::Device destination_device_;
|
|
int64_t dim_;
|
|
};
|
|
|
|
} // namespace torch::autograd
|