pytorch/torch/ao/quantization/experimental/fake_quantize.py
zhudada 96b0e7aaa6 [Code Clean] Clean asserts in torch/ao/quantization/experimental/* and torch/ao/quantization/pt2e/* (#165317)
Replace assert statements with explicit if/raise patterns in:
- torch/ao/quantization/experimental/* (11 errors)
- torch/ao/quantization/pt2e/* (68 errors)

fix partialy #164878
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165317
Approved by: https://github.com/albanD
2025-10-20 23:07:11 +00:00

50 lines
1.8 KiB
Python

from collections.abc import Callable
from typing import Any
import torch
from torch import Tensor
from torch.ao.quantization.experimental.fake_quantize_function import (
fake_quantize_function,
)
from torch.ao.quantization.experimental.observer import APoTObserver
from torch.ao.quantization.fake_quantize import FakeQuantizeBase
class APoTFakeQuantize(FakeQuantizeBase):
alpha: Tensor
gamma: Tensor
quantization_levels: Tensor
level_indices: Tensor
def __init__(self, observer: Callable = APoTObserver, **observer_kwargs: Any):
super().__init__()
self.activation_post_process = observer(**observer_kwargs)
self.dtype = self.activation_post_process.dtype
def calculate_qparams( # type: ignore[override]
self, signed: bool = False
) -> tuple[Tensor, Tensor, Tensor, Tensor]:
return self.activation_post_process.calculate_qparams(signed=signed)
def forward(self, X: torch.Tensor) -> Tensor: # type: ignore[override]
if self.observer_enabled[0] == 1:
self.activation_post_process.forward(X)
result = self.activation_post_process.calculate_qparams(signed=False)
self.alpha = result[0]
self.gamma = result[1]
self.quantization_levels = result[2]
self.level_indices = result[3]
if self.fake_quant_enabled[0] == 1:
if (
self.alpha is None
or self.gamma is None
or self.quantization_levels is None
or self.level_indices is None
):
raise AssertionError("Must set qparams for fake quant")
X = fake_quantize_function.apply(
X, self.alpha, self.gamma, self.quantization_levels, self.level_indices
)
return X