pytorch/torch/_inductor/metrics.py
Shunting Zhang 5d0b3e28dc [inductor] generate fused rms/layer norm bwd (#165370)
RMS/Layer norm backward would generated 2 kind of reductions:
- the reduction computing dx which reduce across the hidden dimension (in the context of transformer)
- the reduction computing dw/db which reduce across the BxT (batch size , sequence length) dimension.

These 2 set of reductions have common input buffers but inductor can not fuse them because of different loop orders.

There are multiple sources of custom kernels that implement fused version of such kernel (Liger-Kernel, quack, Paul Zhang's internal post). This PR enable Inductor to generate such kernels automatically.

The generated kernel is very similar to 33924d20b6/src/liger_kernel/ops/rms_norm.py (L114) .

To make the implementation simple and performing, we enable such fusion only if the inner reduction (computing dx) is a persistent reduction. This should be true for representative inputs. Persistent reduction is critical for the perf here to make sure a loaded tensor does not need to be reload.

To make sure the inner reduction (computing dx) and outer reductions (computing dw/db) being fusible, the PR does the following:
1. convert the outer reductions to pointwise by replacing 'reduction' & 'store_reduction' node with a new type of node 'parital_accumulate'. The new node will collect the reduction type, buffer name, input of reduction etc, which is essential for proper codegening.
2. do loop reordering (rely on the earlier loop ordering after fusion work) to reorder the loops of the converted pointwise so it can be fused with the inner reduction
3. there can be epilogues that need to be added in the end. E.g. the outer reduction may be followed by a division for mean , or followed by a down cast if dw/db is in low precision (fp16/bf16).

Some early benchmarking on H100 shows about 2X speedup for both RMSNorm and LayerNorm backward for shape (1152 * 500, 384 ) used in some internal model. Note that, I manually disable split reduction in this benchmarking since otherwise the fusion will be skipped right now. The next PR will make the mix-order-reduction compose better with split reduction

Pull Request resolved: https://github.com/pytorch/pytorch/pull/165370
Approved by: https://github.com/jansel
ghstack dependencies: #166204
2025-10-28 05:53:52 +00:00

484 lines
14 KiB
Python

from __future__ import annotations
import csv
import dataclasses
import inspect
import os
import re
from dataclasses import dataclass
from functools import lru_cache
from typing import Callable, Optional, TYPE_CHECKING, Union
from torch._inductor import config
from torch._inductor.utils import get_benchmark_name
from torch.utils._ordered_set import OrderedSet
# Prevent circular import
if TYPE_CHECKING:
from torch._inductor.runtime.triton_compat import Config
from torch._inductor.scheduler import BaseSchedulerNode
# counter for tracking how many kernels have been generated
generated_kernel_count = 0
generated_cpp_vec_kernel_count = 0
num_bytes_accessed = 0
nodes_num_elem: list[
tuple[
BaseSchedulerNode,
int,
]
] = []
node_runtimes: list[tuple[BaseSchedulerNode, float]] = []
# counters for tracking fusions
ir_nodes_pre_fusion = 0
# counters for tracking to_dtype inserted
cpp_to_dtype_count = 0
@dataclasses.dataclass
class CppOuterLoopFusedCount:
inner_kernel_number: int
local_buffer_number: int = 0
# The length counts the number of outer loop fusions.
cpp_outer_loop_fused_inner_counts: list[CppOuterLoopFusedCount] = []
num_comprehensive_padding = 0
num_matches_for_scatter_upon_const_tensor = 0
num_loop_reordering = 0
# counter for parallel reduction.
parallel_reduction_count = 0
codegen_mix_order_reduction = 0
# reset all counters
def reset() -> None:
global generated_kernel_count
global generated_cpp_vec_kernel_count
global num_bytes_accessed, nodes_num_elem
global ir_nodes_pre_fusion
global cpp_to_dtype_count
global cpp_outer_loop_fused_inner_counts
global num_comprehensive_padding
global num_matches_for_scatter_upon_const_tensor
global num_loop_reordering
global parallel_reduction_count
global codegen_mix_order_reduction
generated_kernel_count = 0
generated_cpp_vec_kernel_count = 0
num_bytes_accessed = 0
nodes_num_elem.clear()
node_runtimes.clear()
ir_nodes_pre_fusion = 0
cpp_to_dtype_count = 0
cpp_outer_loop_fused_inner_counts.clear()
num_comprehensive_padding = 0
num_matches_for_scatter_upon_const_tensor = 0
num_loop_reordering = 0
parallel_reduction_count = 0
codegen_mix_order_reduction = 0
@dataclass
class CachedMetricsDeltas:
"""
The subset of metrics we want update across cache hits, e.g., the
FxGraphCache.
"""
generated_kernel_count: int
generated_cpp_vec_kernel_count: int
ir_nodes_pre_fusion: int
cpp_to_dtype_count: int
num_bytes_accessed: int
num_matches_for_scatter_upon_const_tensor: int
def get_metric_fields() -> list[str]:
return [field.name for field in dataclasses.fields(CachedMetricsDeltas)]
class CachedMetricsHelper:
"""
A helper class to help calculate and apply counter deltas for those
metrics we want to save with cache entries (e.g., FxGraphCache) and
apply on a cache hit.
"""
def __init__(self) -> None:
self.cached_metrics = {}
for metric in get_metric_fields():
self.cached_metrics[metric] = globals()[metric]
def get_deltas(self) -> CachedMetricsDeltas:
delta_metrics = {}
for metric in get_metric_fields():
delta_metrics[metric] = globals()[metric] - self.cached_metrics[metric]
return CachedMetricsDeltas(**delta_metrics)
@staticmethod
def apply_deltas(delta: CachedMetricsDeltas) -> None:
for metric in get_metric_fields():
globals()[metric] += getattr(delta, metric)
REGISTERED_METRIC_TABLES: dict[str, MetricTable] = {}
@dataclass
class MetricTable:
table_name: str
column_names: list[str]
num_rows_added: int = 0
def add_row(
self, row_fn: Callable[[], dict[str, Optional[Union[str, float]]]]
) -> None:
if self.table_name not in enabled_metric_tables():
return
row_dict = row_fn()
assert len(self.column_names) == len(row_dict), (
f"{len(self.column_names)} v.s. {len(row_dict)}"
)
assert OrderedSet(self.column_names) == OrderedSet(row_dict.keys()), (
f"{OrderedSet(self.column_names)} v.s. {OrderedSet(row_dict.keys())}"
)
bn = get_benchmark_name()
# assert bn is not None
row = [bn] + [row_dict[column_name] for column_name in self.column_names]
assert all(isinstance(i, (str, float, type(None))) for i in row)
self._write_row(row)
def output_filename(self) -> str:
return f"metric_table_{self.table_name}.csv"
def write_header(self) -> None:
filename = self.output_filename()
with open(filename, "w") as fd:
writer = csv.writer(fd, lineterminator="\n")
writer.writerow(["model_name"] + self.column_names)
def _write_row(self, row: list[str | float | None]) -> None:
filename = self.output_filename()
if self.num_rows_added == 0 and not os.path.exists(filename):
self.write_header()
self.num_rows_added += 1
for idx, orig_val in enumerate(row):
if isinstance(orig_val, float):
new_val = f"{orig_val:.6f}"
elif orig_val is None:
new_val = ""
else:
new_val = orig_val
row[idx] = new_val
with open(filename, "a") as fd:
writer = csv.writer(fd, lineterminator="\n")
writer.writerow(row)
@staticmethod
def register_table(name: str, column_names: list[str]) -> None:
table = MetricTable(name, column_names)
REGISTERED_METRIC_TABLES[name] = table
MetricTable.register_table(
"slow_fusion",
[
"kernel1_path",
"kernel1_latency",
"kernel2_path",
"kernel2_latency",
"fused_kernel_path",
"fused_kernel_latency",
"slow_down_ratio",
],
)
# track the fusion statistics for each graph
MetricTable.register_table(
"graph_stats",
[
"graph_id",
"num_nodes_before_fusion",
"num_nodes_after_fusion",
],
)
# track the perf difference between persistent reduction and non-persistent
# reductions
MetricTable.register_table(
"persistent_red_perf",
[
"kernel0_path",
"kernel1_path",
"kernel2_path",
"kernel3_path",
"kernel0_latency",
"kernel1_latency",
"kernel2_latency",
"kernel3_latency",
"size_hints",
"reduction_hint",
],
)
# Log the fusion failures due to indexing mismatch
MetricTable.register_table(
"fusion_failure_due_to_indexing_mismatch",
[
"pre_grad_graph_id",
"post_grad_graph_id",
"node1_name",
"node2_name",
"node1_debug_str",
"node2_debug_str",
"common_buffer_names",
"failure_reason",
],
)
# Log metadata for pointwise/reduction kernels. E.g., model name, kernel path, numel, rnumel, reduction hint
MetricTable.register_table(
"kernel_metadata",
[
"kernel_name",
"kernel_path",
"kernel_category", # pointwise/reduction/foreach etc.
"size_hints",
"reduction_hint",
"line_of_code",
"num_load",
"num_store",
"num_for_loop",
"num_atomic_add",
"num_args",
# xyz numel can be different to size_hints since size_hints are rounded
# up to the nearest power of 2.
# Inductor kernel will burn in the xyz numel in kernel code for static
# shape kernels.
# Logging them will be helpful to find unaligned shape for reduction
"xnumel",
"ynumel",
"rnumel",
"kernel_args_num_gb",
],
)
def _parse_kernel_fn_code(kernel_module_code: str) -> str:
"""
The kernel_module_code is the python module that contains kernel function code.
kernel function is the proper triton kernel function annotated with
@triton.jit
"""
from .codecache import PyCodeCache
from .wrapper_benchmark import get_triton_kernel
mod = PyCodeCache.load(kernel_module_code)
kernel = get_triton_kernel(mod)
# kernel is a CachingAutotune; kernel.fn is the JITFunction;
# kernel.fn.fn is the function being decorate by triton.jit
return inspect.getsource(kernel.fn.fn)
def _parse_kernel_line_of_code(proper_kernel_fn_code: str) -> int:
"""
Return the line of code for the kernel excluding the decorators.
"""
return len(proper_kernel_fn_code.splitlines())
def _parse_size_hints(kernel_module_code: str, kernel_category: str) -> Optional[str]:
if kernel_category == "foreach":
# foreach kernel does not have size_hints
return None
m = re.search(r"size_hints=(\[[0-9, ]*\]),", kernel_module_code)
assert m, "size_hints missing!"
return m.group(1)
def _parse_reduction_hint(
kernel_category: str, kernel_module_code: str
) -> Optional[str]:
if kernel_category not in ("reduction", "persistent_reduction"):
return None
m = re.search(r"reduction_hint=ReductionHint\.(\w*),", kernel_module_code)
assert m, "reduction_hint not found in kernel source code!"
return m.group(1)
def _count_pattern(proper_kernel_fn_code: str, pattern: str) -> int:
return proper_kernel_fn_code.count(pattern)
def _count_args(proper_kernel_fn_code: str) -> int:
def_line = proper_kernel_fn_code.splitlines()[0]
assert def_line.startswith("def ")
start_idx = def_line.index("(")
end_idx = def_line.index("):")
decl_csv = def_line[start_idx + 1 : end_idx]
comps = decl_csv.split(",")
return len(comps)
def _parse_proper_kernel_fn_code(kernel_fn_code: str) -> str:
"""
Skip decorators.
"""
start_pos = kernel_fn_code.index("def ")
return kernel_fn_code[start_pos:]
def _parse_numel(proper_kernel_fn_code: str, numel_arg_name: str) -> Optional[int]:
m = re.search(f"{numel_arg_name} = ([\\d]+)", proper_kernel_fn_code)
if m:
return int(m.group(1))
else:
return None
def _parse_kernel_args_num_gb(
kernel_fn_code: str, kernel_category: str
) -> Optional[float]:
"""
inductor meta looks like:
inductor_meta={... 'mutated_arg_names': [], 'no_x_dim': False, 'kernel_num_gb': 2.0},
"""
m = re.search(r".kernel_num_gb.:\s*([0-9.]+)", kernel_fn_code)
if m:
return float(m.group(1))
else:
"""
There are a few cases that kernel_num_gdb field can be missing:
1. the field will be missing if config.benchmark_kernel and
config.profile_bandwidth are false
2. even if config.benchmark_kernel or config.profile_bandwidth is true.
foreach kernel does not have kernel_num_gb field in the metadata
"""
return None
def log_kernel_metadata(
kernel_name: str, kernel_path: str, kernel_module_code: str
) -> None:
"""
An utility to log kernel metadata. We may parse metadata from kernel source code here.
It's fine to parse the generated kernel code here since the logging is
disabled by default. It would hurt compilation time.
"""
from .wrapper_benchmark import get_kernel_category_by_source_code
kernel_category = get_kernel_category_by_source_code(kernel_module_code)
reduction_hint = _parse_reduction_hint(kernel_category, kernel_module_code)
size_hints = _parse_size_hints(kernel_module_code, kernel_category)
kernel_fn_code = _parse_kernel_fn_code(kernel_module_code)
proper_kernel_fn_code = _parse_proper_kernel_fn_code(kernel_fn_code)
# the line of code excluding the decortors
kernel_line_of_code = _parse_kernel_line_of_code(proper_kernel_fn_code)
get_metric_table("kernel_metadata").add_row(
lambda: {
"kernel_name": kernel_name,
"kernel_path": kernel_path,
"kernel_category": kernel_category,
"size_hints": size_hints,
"reduction_hint": reduction_hint,
"line_of_code": kernel_line_of_code,
"num_load": _count_pattern(proper_kernel_fn_code, "tl.load"),
"num_store": _count_pattern(proper_kernel_fn_code, "tl.store"),
"num_for_loop": _count_pattern(proper_kernel_fn_code, "for "),
"num_atomic_add": _count_pattern(proper_kernel_fn_code, "tl.atomic_add"),
"num_args": _count_args(proper_kernel_fn_code),
"xnumel": _parse_numel(proper_kernel_fn_code, "xnumel"),
"ynumel": _parse_numel(proper_kernel_fn_code, "ynumel"),
"rnumel": _parse_numel(proper_kernel_fn_code, "rnumel"),
"kernel_args_num_gb": _parse_kernel_args_num_gb(
kernel_fn_code, kernel_category
),
}
)
def purge_old_log_files() -> None:
"""
Purge the old log file at the beginning when the benchmark script runs.
Should do it in the parent process rather than the child processes running
each individual model.
"""
for name, table in REGISTERED_METRIC_TABLES.items():
if name in enabled_metric_tables():
filename = table.output_filename()
if os.path.exists(filename):
os.unlink(filename)
table.write_header()
def enabled_metric_tables() -> OrderedSet[str]:
return enabled_metric_tables_impl(config.enabled_metric_tables)
@lru_cache
def enabled_metric_tables_impl(config_str: str) -> OrderedSet[str]:
enabled: OrderedSet[str] = OrderedSet()
for name in config_str.split(","):
name = name.strip()
if not name:
continue
assert name in REGISTERED_METRIC_TABLES, (
f"Metric table name {name} is not registered"
)
enabled.add(name)
return enabled
def is_metric_table_enabled(name: str) -> bool:
return name in enabled_metric_tables()
def get_metric_table(name: str) -> MetricTable:
assert name in REGISTERED_METRIC_TABLES, f"Metric table {name} is not defined"
return REGISTERED_METRIC_TABLES[name]
MetricTable.register_table(
"kernel_autotune",
[
"kernel_path",
"kernel_name",
"triton_config",
"latency_ms",
],
)
def log_kernel_autotune_result(
kernel_path: str, kernel_name: str, config: Config, latency: float
) -> None:
get_metric_table("kernel_autotune").add_row(
lambda: {
"kernel_path": kernel_path,
"kernel_name": kernel_name,
"triton_config": str(config),
"latency_ms": latency,
}
)