mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
RMS/Layer norm backward would generated 2 kind of reductions:
- the reduction computing dx which reduce across the hidden dimension (in the context of transformer)
- the reduction computing dw/db which reduce across the BxT (batch size , sequence length) dimension.
These 2 set of reductions have common input buffers but inductor can not fuse them because of different loop orders.
There are multiple sources of custom kernels that implement fused version of such kernel (Liger-Kernel, quack, Paul Zhang's internal post). This PR enable Inductor to generate such kernels automatically.
The generated kernel is very similar to 33924d20b6/src/liger_kernel/ops/rms_norm.py (L114) .
To make the implementation simple and performing, we enable such fusion only if the inner reduction (computing dx) is a persistent reduction. This should be true for representative inputs. Persistent reduction is critical for the perf here to make sure a loaded tensor does not need to be reload.
To make sure the inner reduction (computing dx) and outer reductions (computing dw/db) being fusible, the PR does the following:
1. convert the outer reductions to pointwise by replacing 'reduction' & 'store_reduction' node with a new type of node 'parital_accumulate'. The new node will collect the reduction type, buffer name, input of reduction etc, which is essential for proper codegening.
2. do loop reordering (rely on the earlier loop ordering after fusion work) to reorder the loops of the converted pointwise so it can be fused with the inner reduction
3. there can be epilogues that need to be added in the end. E.g. the outer reduction may be followed by a division for mean , or followed by a down cast if dw/db is in low precision (fp16/bf16).
Some early benchmarking on H100 shows about 2X speedup for both RMSNorm and LayerNorm backward for shape (1152 * 500, 384 ) used in some internal model. Note that, I manually disable split reduction in this benchmarking since otherwise the fusion will be skipped right now. The next PR will make the mix-order-reduction compose better with split reduction
Pull Request resolved: https://github.com/pytorch/pytorch/pull/165370
Approved by: https://github.com/jansel
ghstack dependencies: #166204
484 lines
14 KiB
Python
484 lines
14 KiB
Python
from __future__ import annotations
|
|
|
|
import csv
|
|
import dataclasses
|
|
import inspect
|
|
import os
|
|
import re
|
|
from dataclasses import dataclass
|
|
from functools import lru_cache
|
|
from typing import Callable, Optional, TYPE_CHECKING, Union
|
|
|
|
from torch._inductor import config
|
|
from torch._inductor.utils import get_benchmark_name
|
|
from torch.utils._ordered_set import OrderedSet
|
|
|
|
|
|
# Prevent circular import
|
|
if TYPE_CHECKING:
|
|
from torch._inductor.runtime.triton_compat import Config
|
|
from torch._inductor.scheduler import BaseSchedulerNode
|
|
|
|
# counter for tracking how many kernels have been generated
|
|
generated_kernel_count = 0
|
|
generated_cpp_vec_kernel_count = 0
|
|
num_bytes_accessed = 0
|
|
nodes_num_elem: list[
|
|
tuple[
|
|
BaseSchedulerNode,
|
|
int,
|
|
]
|
|
] = []
|
|
node_runtimes: list[tuple[BaseSchedulerNode, float]] = []
|
|
|
|
# counters for tracking fusions
|
|
ir_nodes_pre_fusion = 0
|
|
|
|
# counters for tracking to_dtype inserted
|
|
cpp_to_dtype_count = 0
|
|
|
|
|
|
@dataclasses.dataclass
|
|
class CppOuterLoopFusedCount:
|
|
inner_kernel_number: int
|
|
local_buffer_number: int = 0
|
|
|
|
|
|
# The length counts the number of outer loop fusions.
|
|
cpp_outer_loop_fused_inner_counts: list[CppOuterLoopFusedCount] = []
|
|
|
|
num_comprehensive_padding = 0
|
|
num_matches_for_scatter_upon_const_tensor = 0
|
|
|
|
num_loop_reordering = 0
|
|
|
|
# counter for parallel reduction.
|
|
parallel_reduction_count = 0
|
|
|
|
codegen_mix_order_reduction = 0
|
|
|
|
|
|
# reset all counters
|
|
def reset() -> None:
|
|
global generated_kernel_count
|
|
global generated_cpp_vec_kernel_count
|
|
global num_bytes_accessed, nodes_num_elem
|
|
global ir_nodes_pre_fusion
|
|
global cpp_to_dtype_count
|
|
global cpp_outer_loop_fused_inner_counts
|
|
global num_comprehensive_padding
|
|
global num_matches_for_scatter_upon_const_tensor
|
|
global num_loop_reordering
|
|
global parallel_reduction_count
|
|
global codegen_mix_order_reduction
|
|
|
|
generated_kernel_count = 0
|
|
generated_cpp_vec_kernel_count = 0
|
|
num_bytes_accessed = 0
|
|
nodes_num_elem.clear()
|
|
node_runtimes.clear()
|
|
ir_nodes_pre_fusion = 0
|
|
cpp_to_dtype_count = 0
|
|
cpp_outer_loop_fused_inner_counts.clear()
|
|
num_comprehensive_padding = 0
|
|
num_matches_for_scatter_upon_const_tensor = 0
|
|
num_loop_reordering = 0
|
|
parallel_reduction_count = 0
|
|
codegen_mix_order_reduction = 0
|
|
|
|
|
|
@dataclass
|
|
class CachedMetricsDeltas:
|
|
"""
|
|
The subset of metrics we want update across cache hits, e.g., the
|
|
FxGraphCache.
|
|
"""
|
|
|
|
generated_kernel_count: int
|
|
generated_cpp_vec_kernel_count: int
|
|
ir_nodes_pre_fusion: int
|
|
cpp_to_dtype_count: int
|
|
num_bytes_accessed: int
|
|
num_matches_for_scatter_upon_const_tensor: int
|
|
|
|
|
|
def get_metric_fields() -> list[str]:
|
|
return [field.name for field in dataclasses.fields(CachedMetricsDeltas)]
|
|
|
|
|
|
class CachedMetricsHelper:
|
|
"""
|
|
A helper class to help calculate and apply counter deltas for those
|
|
metrics we want to save with cache entries (e.g., FxGraphCache) and
|
|
apply on a cache hit.
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
self.cached_metrics = {}
|
|
for metric in get_metric_fields():
|
|
self.cached_metrics[metric] = globals()[metric]
|
|
|
|
def get_deltas(self) -> CachedMetricsDeltas:
|
|
delta_metrics = {}
|
|
for metric in get_metric_fields():
|
|
delta_metrics[metric] = globals()[metric] - self.cached_metrics[metric]
|
|
|
|
return CachedMetricsDeltas(**delta_metrics)
|
|
|
|
@staticmethod
|
|
def apply_deltas(delta: CachedMetricsDeltas) -> None:
|
|
for metric in get_metric_fields():
|
|
globals()[metric] += getattr(delta, metric)
|
|
|
|
|
|
REGISTERED_METRIC_TABLES: dict[str, MetricTable] = {}
|
|
|
|
|
|
@dataclass
|
|
class MetricTable:
|
|
table_name: str
|
|
column_names: list[str]
|
|
|
|
num_rows_added: int = 0
|
|
|
|
def add_row(
|
|
self, row_fn: Callable[[], dict[str, Optional[Union[str, float]]]]
|
|
) -> None:
|
|
if self.table_name not in enabled_metric_tables():
|
|
return
|
|
|
|
row_dict = row_fn()
|
|
assert len(self.column_names) == len(row_dict), (
|
|
f"{len(self.column_names)} v.s. {len(row_dict)}"
|
|
)
|
|
assert OrderedSet(self.column_names) == OrderedSet(row_dict.keys()), (
|
|
f"{OrderedSet(self.column_names)} v.s. {OrderedSet(row_dict.keys())}"
|
|
)
|
|
|
|
bn = get_benchmark_name()
|
|
# assert bn is not None
|
|
row = [bn] + [row_dict[column_name] for column_name in self.column_names]
|
|
assert all(isinstance(i, (str, float, type(None))) for i in row)
|
|
self._write_row(row)
|
|
|
|
def output_filename(self) -> str:
|
|
return f"metric_table_{self.table_name}.csv"
|
|
|
|
def write_header(self) -> None:
|
|
filename = self.output_filename()
|
|
with open(filename, "w") as fd:
|
|
writer = csv.writer(fd, lineterminator="\n")
|
|
writer.writerow(["model_name"] + self.column_names)
|
|
|
|
def _write_row(self, row: list[str | float | None]) -> None:
|
|
filename = self.output_filename()
|
|
if self.num_rows_added == 0 and not os.path.exists(filename):
|
|
self.write_header()
|
|
|
|
self.num_rows_added += 1
|
|
|
|
for idx, orig_val in enumerate(row):
|
|
if isinstance(orig_val, float):
|
|
new_val = f"{orig_val:.6f}"
|
|
elif orig_val is None:
|
|
new_val = ""
|
|
else:
|
|
new_val = orig_val
|
|
row[idx] = new_val
|
|
|
|
with open(filename, "a") as fd:
|
|
writer = csv.writer(fd, lineterminator="\n")
|
|
writer.writerow(row)
|
|
|
|
@staticmethod
|
|
def register_table(name: str, column_names: list[str]) -> None:
|
|
table = MetricTable(name, column_names)
|
|
REGISTERED_METRIC_TABLES[name] = table
|
|
|
|
|
|
MetricTable.register_table(
|
|
"slow_fusion",
|
|
[
|
|
"kernel1_path",
|
|
"kernel1_latency",
|
|
"kernel2_path",
|
|
"kernel2_latency",
|
|
"fused_kernel_path",
|
|
"fused_kernel_latency",
|
|
"slow_down_ratio",
|
|
],
|
|
)
|
|
|
|
# track the fusion statistics for each graph
|
|
MetricTable.register_table(
|
|
"graph_stats",
|
|
[
|
|
"graph_id",
|
|
"num_nodes_before_fusion",
|
|
"num_nodes_after_fusion",
|
|
],
|
|
)
|
|
|
|
# track the perf difference between persistent reduction and non-persistent
|
|
# reductions
|
|
MetricTable.register_table(
|
|
"persistent_red_perf",
|
|
[
|
|
"kernel0_path",
|
|
"kernel1_path",
|
|
"kernel2_path",
|
|
"kernel3_path",
|
|
"kernel0_latency",
|
|
"kernel1_latency",
|
|
"kernel2_latency",
|
|
"kernel3_latency",
|
|
"size_hints",
|
|
"reduction_hint",
|
|
],
|
|
)
|
|
|
|
# Log the fusion failures due to indexing mismatch
|
|
MetricTable.register_table(
|
|
"fusion_failure_due_to_indexing_mismatch",
|
|
[
|
|
"pre_grad_graph_id",
|
|
"post_grad_graph_id",
|
|
"node1_name",
|
|
"node2_name",
|
|
"node1_debug_str",
|
|
"node2_debug_str",
|
|
"common_buffer_names",
|
|
"failure_reason",
|
|
],
|
|
)
|
|
|
|
# Log metadata for pointwise/reduction kernels. E.g., model name, kernel path, numel, rnumel, reduction hint
|
|
MetricTable.register_table(
|
|
"kernel_metadata",
|
|
[
|
|
"kernel_name",
|
|
"kernel_path",
|
|
"kernel_category", # pointwise/reduction/foreach etc.
|
|
"size_hints",
|
|
"reduction_hint",
|
|
"line_of_code",
|
|
"num_load",
|
|
"num_store",
|
|
"num_for_loop",
|
|
"num_atomic_add",
|
|
"num_args",
|
|
# xyz numel can be different to size_hints since size_hints are rounded
|
|
# up to the nearest power of 2.
|
|
# Inductor kernel will burn in the xyz numel in kernel code for static
|
|
# shape kernels.
|
|
# Logging them will be helpful to find unaligned shape for reduction
|
|
"xnumel",
|
|
"ynumel",
|
|
"rnumel",
|
|
"kernel_args_num_gb",
|
|
],
|
|
)
|
|
|
|
|
|
def _parse_kernel_fn_code(kernel_module_code: str) -> str:
|
|
"""
|
|
The kernel_module_code is the python module that contains kernel function code.
|
|
kernel function is the proper triton kernel function annotated with
|
|
@triton.jit
|
|
"""
|
|
from .codecache import PyCodeCache
|
|
from .wrapper_benchmark import get_triton_kernel
|
|
|
|
mod = PyCodeCache.load(kernel_module_code)
|
|
kernel = get_triton_kernel(mod)
|
|
# kernel is a CachingAutotune; kernel.fn is the JITFunction;
|
|
# kernel.fn.fn is the function being decorate by triton.jit
|
|
return inspect.getsource(kernel.fn.fn)
|
|
|
|
|
|
def _parse_kernel_line_of_code(proper_kernel_fn_code: str) -> int:
|
|
"""
|
|
Return the line of code for the kernel excluding the decorators.
|
|
"""
|
|
return len(proper_kernel_fn_code.splitlines())
|
|
|
|
|
|
def _parse_size_hints(kernel_module_code: str, kernel_category: str) -> Optional[str]:
|
|
if kernel_category == "foreach":
|
|
# foreach kernel does not have size_hints
|
|
return None
|
|
m = re.search(r"size_hints=(\[[0-9, ]*\]),", kernel_module_code)
|
|
assert m, "size_hints missing!"
|
|
return m.group(1)
|
|
|
|
|
|
def _parse_reduction_hint(
|
|
kernel_category: str, kernel_module_code: str
|
|
) -> Optional[str]:
|
|
if kernel_category not in ("reduction", "persistent_reduction"):
|
|
return None
|
|
m = re.search(r"reduction_hint=ReductionHint\.(\w*),", kernel_module_code)
|
|
assert m, "reduction_hint not found in kernel source code!"
|
|
return m.group(1)
|
|
|
|
|
|
def _count_pattern(proper_kernel_fn_code: str, pattern: str) -> int:
|
|
return proper_kernel_fn_code.count(pattern)
|
|
|
|
|
|
def _count_args(proper_kernel_fn_code: str) -> int:
|
|
def_line = proper_kernel_fn_code.splitlines()[0]
|
|
assert def_line.startswith("def ")
|
|
start_idx = def_line.index("(")
|
|
end_idx = def_line.index("):")
|
|
decl_csv = def_line[start_idx + 1 : end_idx]
|
|
comps = decl_csv.split(",")
|
|
return len(comps)
|
|
|
|
|
|
def _parse_proper_kernel_fn_code(kernel_fn_code: str) -> str:
|
|
"""
|
|
Skip decorators.
|
|
"""
|
|
start_pos = kernel_fn_code.index("def ")
|
|
return kernel_fn_code[start_pos:]
|
|
|
|
|
|
def _parse_numel(proper_kernel_fn_code: str, numel_arg_name: str) -> Optional[int]:
|
|
m = re.search(f"{numel_arg_name} = ([\\d]+)", proper_kernel_fn_code)
|
|
if m:
|
|
return int(m.group(1))
|
|
else:
|
|
return None
|
|
|
|
|
|
def _parse_kernel_args_num_gb(
|
|
kernel_fn_code: str, kernel_category: str
|
|
) -> Optional[float]:
|
|
"""
|
|
inductor meta looks like:
|
|
inductor_meta={... 'mutated_arg_names': [], 'no_x_dim': False, 'kernel_num_gb': 2.0},
|
|
"""
|
|
m = re.search(r".kernel_num_gb.:\s*([0-9.]+)", kernel_fn_code)
|
|
if m:
|
|
return float(m.group(1))
|
|
else:
|
|
"""
|
|
There are a few cases that kernel_num_gdb field can be missing:
|
|
1. the field will be missing if config.benchmark_kernel and
|
|
config.profile_bandwidth are false
|
|
2. even if config.benchmark_kernel or config.profile_bandwidth is true.
|
|
foreach kernel does not have kernel_num_gb field in the metadata
|
|
"""
|
|
return None
|
|
|
|
|
|
def log_kernel_metadata(
|
|
kernel_name: str, kernel_path: str, kernel_module_code: str
|
|
) -> None:
|
|
"""
|
|
An utility to log kernel metadata. We may parse metadata from kernel source code here.
|
|
|
|
It's fine to parse the generated kernel code here since the logging is
|
|
disabled by default. It would hurt compilation time.
|
|
"""
|
|
from .wrapper_benchmark import get_kernel_category_by_source_code
|
|
|
|
kernel_category = get_kernel_category_by_source_code(kernel_module_code)
|
|
reduction_hint = _parse_reduction_hint(kernel_category, kernel_module_code)
|
|
size_hints = _parse_size_hints(kernel_module_code, kernel_category)
|
|
kernel_fn_code = _parse_kernel_fn_code(kernel_module_code)
|
|
|
|
proper_kernel_fn_code = _parse_proper_kernel_fn_code(kernel_fn_code)
|
|
|
|
# the line of code excluding the decortors
|
|
kernel_line_of_code = _parse_kernel_line_of_code(proper_kernel_fn_code)
|
|
|
|
get_metric_table("kernel_metadata").add_row(
|
|
lambda: {
|
|
"kernel_name": kernel_name,
|
|
"kernel_path": kernel_path,
|
|
"kernel_category": kernel_category,
|
|
"size_hints": size_hints,
|
|
"reduction_hint": reduction_hint,
|
|
"line_of_code": kernel_line_of_code,
|
|
"num_load": _count_pattern(proper_kernel_fn_code, "tl.load"),
|
|
"num_store": _count_pattern(proper_kernel_fn_code, "tl.store"),
|
|
"num_for_loop": _count_pattern(proper_kernel_fn_code, "for "),
|
|
"num_atomic_add": _count_pattern(proper_kernel_fn_code, "tl.atomic_add"),
|
|
"num_args": _count_args(proper_kernel_fn_code),
|
|
"xnumel": _parse_numel(proper_kernel_fn_code, "xnumel"),
|
|
"ynumel": _parse_numel(proper_kernel_fn_code, "ynumel"),
|
|
"rnumel": _parse_numel(proper_kernel_fn_code, "rnumel"),
|
|
"kernel_args_num_gb": _parse_kernel_args_num_gb(
|
|
kernel_fn_code, kernel_category
|
|
),
|
|
}
|
|
)
|
|
|
|
|
|
def purge_old_log_files() -> None:
|
|
"""
|
|
Purge the old log file at the beginning when the benchmark script runs.
|
|
Should do it in the parent process rather than the child processes running
|
|
each individual model.
|
|
"""
|
|
for name, table in REGISTERED_METRIC_TABLES.items():
|
|
if name in enabled_metric_tables():
|
|
filename = table.output_filename()
|
|
if os.path.exists(filename):
|
|
os.unlink(filename)
|
|
|
|
table.write_header()
|
|
|
|
|
|
def enabled_metric_tables() -> OrderedSet[str]:
|
|
return enabled_metric_tables_impl(config.enabled_metric_tables)
|
|
|
|
|
|
@lru_cache
|
|
def enabled_metric_tables_impl(config_str: str) -> OrderedSet[str]:
|
|
enabled: OrderedSet[str] = OrderedSet()
|
|
for name in config_str.split(","):
|
|
name = name.strip()
|
|
if not name:
|
|
continue
|
|
assert name in REGISTERED_METRIC_TABLES, (
|
|
f"Metric table name {name} is not registered"
|
|
)
|
|
enabled.add(name)
|
|
return enabled
|
|
|
|
|
|
def is_metric_table_enabled(name: str) -> bool:
|
|
return name in enabled_metric_tables()
|
|
|
|
|
|
def get_metric_table(name: str) -> MetricTable:
|
|
assert name in REGISTERED_METRIC_TABLES, f"Metric table {name} is not defined"
|
|
return REGISTERED_METRIC_TABLES[name]
|
|
|
|
|
|
MetricTable.register_table(
|
|
"kernel_autotune",
|
|
[
|
|
"kernel_path",
|
|
"kernel_name",
|
|
"triton_config",
|
|
"latency_ms",
|
|
],
|
|
)
|
|
|
|
|
|
def log_kernel_autotune_result(
|
|
kernel_path: str, kernel_name: str, config: Config, latency: float
|
|
) -> None:
|
|
get_metric_table("kernel_autotune").add_row(
|
|
lambda: {
|
|
"kernel_path": kernel_path,
|
|
"kernel_name": kernel_name,
|
|
"triton_config": str(config),
|
|
"latency_ms": latency,
|
|
}
|
|
)
|