mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 00:20:18 +01:00
Fixes #100842 Disable jiterator for complex tan and tanh kernels due to accuracy issues, matching the existing approach used for acos, acosh, asin, and asinh. Reverts to thrust implementation which provides better numerical accuracy. Pull Request resolved: https://github.com/pytorch/pytorch/pull/165250 Approved by: https://github.com/ezyang
1895 lines
76 KiB
Python
1895 lines
76 KiB
Python
# Owner(s): ["module: tests"]
|
|
|
|
import math
|
|
import random
|
|
import unittest
|
|
from numbers import Number
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from torch import inf, nan
|
|
|
|
from torch.testing import make_tensor
|
|
from torch.testing._internal.common_device_type import (
|
|
dtypes,
|
|
dtypesIfCPU,
|
|
dtypesIfCUDA,
|
|
instantiate_device_type_tests,
|
|
largeTensorTest,
|
|
onlyCPU,
|
|
onlyCUDA,
|
|
onlyNativeDeviceTypes,
|
|
ops,
|
|
precisionOverride,
|
|
)
|
|
from torch.testing._internal.common_dtype import (
|
|
all_types_and_complex_and,
|
|
complex_types,
|
|
floating_and_complex_types_and,
|
|
floating_types_and,
|
|
get_all_math_dtypes,
|
|
integral_types_and,
|
|
)
|
|
from torch.testing._internal.common_methods_invocations import (
|
|
generate_elementwise_unary_extremal_value_tensors,
|
|
generate_elementwise_unary_large_value_tensors,
|
|
generate_elementwise_unary_small_value_tensors,
|
|
generate_elementwise_unary_tensors,
|
|
unary_ufuncs,
|
|
)
|
|
from torch.testing._internal.common_utils import (
|
|
gradcheck,
|
|
is_iterable_of_tensors,
|
|
numpy_to_torch_dtype_dict,
|
|
run_tests,
|
|
skipIfNoSciPy,
|
|
skipIfRocm,
|
|
slowTest,
|
|
suppress_warnings,
|
|
TEST_SCIPY,
|
|
TestCase,
|
|
torch_to_numpy_dtype_dict,
|
|
xfailIfTorchDynamo,
|
|
)
|
|
from torch.utils import _pytree as pytree
|
|
|
|
from torch.testing._internal.common_utils import IS_WINDOWS, slowTestIf
|
|
|
|
if TEST_SCIPY:
|
|
import scipy
|
|
|
|
# Refer [scipy reference filter]
|
|
# Filter operators for which the reference function
|
|
# is available in the current environment (for reference_numerics tests).
|
|
reference_filtered_ops = list(filter(lambda op: op.ref is not None, unary_ufuncs))
|
|
|
|
# Tests for unary "universal functions (ufuncs)" that accept a single
|
|
# tensor and have common properties like:
|
|
# - they are elementwise functions
|
|
# - the input shape is the output shape
|
|
# - they typically have method and inplace variants
|
|
# - they typically support the out kwarg
|
|
# - they typically have NumPy or SciPy references
|
|
|
|
# See NumPy's universal function documentation
|
|
# (https://numpy.org/doc/1.18/reference/ufuncs.html) for more details
|
|
# about the concept of ufuncs.
|
|
|
|
|
|
# TODO: port test_unary_out_op_mem_overlap
|
|
# TODO: add test for inplace variants erroring on broadcasted inputs
|
|
class TestUnaryUfuncs(TestCase):
|
|
exact_dtype = True
|
|
|
|
@ops(
|
|
[_fn for _fn in unary_ufuncs if _fn.domain != (None, None)],
|
|
allowed_dtypes=floating_types_and(torch.bfloat16, torch.half),
|
|
)
|
|
def test_float_domains(self, device, dtype, op):
|
|
eps = (1e-5, 1e-3, 1e-1, 1, 2, 10, 20, 50, 100)
|
|
|
|
low, high = op.domain
|
|
# NOTE: the following two loops are separated for readability
|
|
if low is not None:
|
|
low_tensor = torch.tensor(low, device=device, dtype=dtype)
|
|
for epsilon in eps:
|
|
lower_tensor = low_tensor - epsilon
|
|
|
|
# Skips the test if the difference is not representable,
|
|
# which can occur if, for example, the difference is small
|
|
# and the dtype is imprecise (like bfloat16 is)
|
|
if lower_tensor.item() == low_tensor.item():
|
|
continue
|
|
|
|
result = op(lower_tensor)
|
|
self.assertEqual(
|
|
result.item(),
|
|
float("nan"),
|
|
msg=(
|
|
f"input of {lower_tensor.item()} outside lower domain boundary"
|
|
f" {low} produced {result.item()}, not nan!"
|
|
),
|
|
)
|
|
|
|
if high is not None:
|
|
high_tensor = torch.tensor(high, device=device, dtype=dtype)
|
|
for epsilon in eps:
|
|
higher_tensor = high_tensor + epsilon
|
|
|
|
# See above comment
|
|
if higher_tensor.item() == high_tensor.item():
|
|
continue
|
|
|
|
result = op(higher_tensor)
|
|
self.assertEqual(
|
|
result.item(),
|
|
float("nan"),
|
|
msg=(
|
|
f"input of {higher_tensor.item()} outside upper domain boundary"
|
|
f" {high} produced {result.item()}, not nan!"
|
|
),
|
|
)
|
|
|
|
# Helper for comparing torch tensors and numpy arrays
|
|
# TODO: should this or assertEqual also validate that strides are equal?
|
|
def assertEqualHelper(
|
|
self, actual, expected, msg, *, dtype, exact_dtype=True, **kwargs
|
|
):
|
|
assert isinstance(actual, torch.Tensor)
|
|
|
|
# Some NumPy functions return scalars, not arrays
|
|
if isinstance(expected, Number):
|
|
self.assertEqual(actual.item(), expected, msg, **kwargs)
|
|
elif isinstance(expected, np.ndarray):
|
|
# Handles exact dtype comparisons between arrays and tensors
|
|
if exact_dtype:
|
|
if (
|
|
actual.dtype is torch.bfloat16
|
|
or expected.dtype != torch_to_numpy_dtype_dict[actual.dtype]
|
|
):
|
|
# Allows array dtype to be float32 when comparing with bfloat16 tensors
|
|
# since NumPy doesn't support the bfloat16 dtype
|
|
# Also ops like scipy.special.erf, scipy.special.erfc, etc, promote float16
|
|
# to float32
|
|
if expected.dtype == np.float32:
|
|
assert actual.dtype in (
|
|
torch.float16,
|
|
torch.bfloat16,
|
|
torch.float32,
|
|
)
|
|
elif expected.dtype == np.float64:
|
|
assert actual.dtype in (
|
|
torch.float16,
|
|
torch.bfloat16,
|
|
torch.float32,
|
|
torch.float64,
|
|
)
|
|
else:
|
|
self.fail(
|
|
f"Expected dtype {expected.dtype} but got {actual.dtype}!"
|
|
)
|
|
|
|
self.assertEqual(
|
|
actual,
|
|
torch.from_numpy(expected).to(actual.dtype),
|
|
msg,
|
|
exact_device=False,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
self.assertEqual(actual, expected, msg, exact_device=False, **kwargs)
|
|
|
|
# Tests that the function and its (array-accepting) reference produce the same
|
|
# values on given tensors
|
|
def _test_reference_numerics(self, dtype, op, tensors, equal_nan=True):
|
|
def _helper_reference_numerics(
|
|
expected, actual, msg, exact_dtype, equal_nan=True
|
|
):
|
|
if not torch.can_cast(
|
|
numpy_to_torch_dtype_dict[expected.dtype.type], dtype
|
|
):
|
|
exact_dtype = False
|
|
|
|
if dtype in [torch.uint8, torch.int8, torch.bool]:
|
|
# NOTE: For these dtypes, PyTorch computes in the default scalar type (float)
|
|
# while NumPy computes in float16
|
|
self.assertEqualHelper(
|
|
actual,
|
|
expected,
|
|
msg,
|
|
dtype=dtype,
|
|
exact_dtype=exact_dtype,
|
|
rtol=1e-3,
|
|
atol=1e-2,
|
|
)
|
|
elif dtype is torch.bfloat16:
|
|
# Ref: https://github.com/pytorch/pytorch/blob/master/torch/testing/_internal/common_utils.py#L1149
|
|
self.assertEqualHelper(
|
|
actual,
|
|
expected,
|
|
msg,
|
|
dtype=dtype,
|
|
exact_dtype=exact_dtype,
|
|
rtol=16e-3,
|
|
atol=1e-5,
|
|
)
|
|
elif dtype is torch.half:
|
|
self.assertEqualHelper(
|
|
actual,
|
|
expected,
|
|
msg,
|
|
dtype=dtype,
|
|
exact_dtype=exact_dtype,
|
|
rtol=1.2e-03,
|
|
atol=1e-03,
|
|
)
|
|
else:
|
|
self.assertEqualHelper(
|
|
actual,
|
|
expected,
|
|
msg,
|
|
dtype=dtype,
|
|
equal_nan=equal_nan,
|
|
exact_dtype=exact_dtype,
|
|
)
|
|
|
|
for t in tensors:
|
|
t = t.input
|
|
torch_kwargs, numpy_kwargs = op.sample_kwargs(t.device, dtype, t)
|
|
if dtype is torch.bfloat16:
|
|
a = t.cpu().to(torch.float32).numpy()
|
|
elif dtype is torch.complex32:
|
|
a = t.cpu().to(torch.complex64).numpy()
|
|
else:
|
|
a = t.cpu().numpy()
|
|
|
|
actual = op(t, **torch_kwargs)
|
|
expected = op.ref(a, **numpy_kwargs)
|
|
|
|
# Crafts a custom error message for smaller, printable tensors
|
|
if t.numel() < 10:
|
|
msg = (
|
|
"Failed to produce expected results! Input tensor was"
|
|
f" {t}, torch result is {actual}, and reference result is"
|
|
f" {expected}."
|
|
)
|
|
else:
|
|
msg = None
|
|
|
|
exact_dtype = True
|
|
if isinstance(actual, torch.Tensor):
|
|
_helper_reference_numerics(
|
|
expected, actual, msg, exact_dtype, equal_nan
|
|
)
|
|
else:
|
|
for x, y in zip(expected, actual):
|
|
# testing multi-outputs results
|
|
_helper_reference_numerics(x, y, msg, exact_dtype, equal_nan)
|
|
|
|
# Tests that the function and its (array-accepting) reference produce the same
|
|
# values on a range of tensors, including empty tensors, scalar tensors,
|
|
# 1D tensors and a large 2D tensor with interesting and extremal values
|
|
# and noncontiguities.
|
|
@suppress_warnings
|
|
@ops(reference_filtered_ops)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_reference_numerics_normal(self, device, dtype, op):
|
|
tensors = generate_elementwise_unary_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=False
|
|
)
|
|
self._test_reference_numerics(dtype, op, tensors)
|
|
|
|
@suppress_warnings
|
|
@ops(reference_filtered_ops)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_reference_numerics_small(self, device, dtype, op):
|
|
if dtype in (torch.bool,):
|
|
raise self.skipTest("bool has no small values")
|
|
|
|
tensors = generate_elementwise_unary_small_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=False
|
|
)
|
|
self._test_reference_numerics(dtype, op, tensors)
|
|
|
|
@suppress_warnings
|
|
@ops(reference_filtered_ops)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_reference_numerics_large(self, device, dtype, op):
|
|
if dtype in (torch.bool, torch.uint8, torch.int8):
|
|
raise self.skipTest("bool, uint8, and int8 dtypes have no large values")
|
|
|
|
tensors = generate_elementwise_unary_large_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=False
|
|
)
|
|
self._test_reference_numerics(dtype, op, tensors)
|
|
|
|
@suppress_warnings
|
|
@ops(
|
|
reference_filtered_ops,
|
|
allowed_dtypes=floating_and_complex_types_and(torch.bfloat16, torch.half),
|
|
)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_reference_numerics_extremal(self, device, dtype, op):
|
|
tensors = generate_elementwise_unary_extremal_value_tensors(
|
|
op, device=device, dtype=dtype, requires_grad=False
|
|
)
|
|
self._test_reference_numerics(dtype, op, tensors)
|
|
|
|
# Tests for testing (non)contiguity consistency
|
|
@ops(unary_ufuncs)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_contig_vs_every_other(self, device, dtype, op):
|
|
contig = make_tensor(
|
|
(1026,), device=device, dtype=dtype, low=op.domain[0], high=op.domain[1]
|
|
)
|
|
non_contig = contig[::2]
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, non_contig)
|
|
expected = op(non_contig, **torch_kwargs)
|
|
result = op(contig, **torch_kwargs)
|
|
result = pytree.tree_map(lambda x: x[::2], result)
|
|
self.assertEqual(result, expected)
|
|
|
|
@ops(unary_ufuncs)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_contig_vs_transposed(self, device, dtype, op):
|
|
contig = make_tensor(
|
|
(789, 357), device=device, dtype=dtype, low=op.domain[0], high=op.domain[1]
|
|
)
|
|
non_contig = contig.T
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
expected = op(non_contig, **torch_kwargs)
|
|
result = op(contig, **torch_kwargs)
|
|
result = pytree.tree_map(lambda x: x.T, result)
|
|
self.assertEqual(result, expected)
|
|
|
|
@ops(unary_ufuncs)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_non_contig(self, device, dtype, op):
|
|
shapes = [(5, 7), (1024,)]
|
|
for shape in shapes:
|
|
contig = make_tensor(
|
|
shape, dtype=dtype, device=device, low=op.domain[0], high=op.domain[1]
|
|
)
|
|
non_contig = torch.empty(shape + (2,), device=device, dtype=dtype)[..., 0]
|
|
non_contig.copy_(contig)
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))
|
|
|
|
@ops(unary_ufuncs)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_non_contig_index(self, device, dtype, op):
|
|
contig = make_tensor(
|
|
(2, 2, 1, 2),
|
|
dtype=dtype,
|
|
device=device,
|
|
low=op.domain[0],
|
|
high=op.domain[1],
|
|
)
|
|
non_contig = contig[:, 1, ...]
|
|
contig = non_contig.contiguous()
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs), op(non_contig, **torch_kwargs))
|
|
|
|
@ops(unary_ufuncs)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_non_contig_expand(self, device, dtype, op):
|
|
shapes = [(1, 3), (1, 7), (5, 7)]
|
|
for shape in shapes:
|
|
contig = make_tensor(
|
|
shape, dtype=dtype, device=device, low=op.domain[0], high=op.domain[1]
|
|
)
|
|
non_contig = contig.clone().expand(3, -1, -1)
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertFalse(non_contig.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
contig = op(contig, **torch_kwargs)
|
|
non_contig = op(non_contig, **torch_kwargs)
|
|
for i in range(3):
|
|
non_contig_i = pytree.tree_map(lambda x: x[i], non_contig)
|
|
self.assertEqual(
|
|
contig, non_contig_i, msg="non-contiguous expand[" + str(i) + "]"
|
|
)
|
|
|
|
@ops(unary_ufuncs)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_contig_size1(self, device, dtype, op):
|
|
contig = make_tensor(
|
|
(5, 100), dtype=dtype, device=device, low=op.domain[0], high=op.domain[1]
|
|
)
|
|
contig = contig[:1, :50]
|
|
contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
|
|
contig2.copy_(contig)
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertTrue(contig2.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))
|
|
|
|
@ops(unary_ufuncs)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_contig_size1_large_dim(self, device, dtype, op):
|
|
contig = make_tensor(
|
|
(5, 2, 3, 1, 4, 5, 3, 2, 1, 2, 3, 4),
|
|
dtype=dtype,
|
|
device=device,
|
|
low=op.domain[0],
|
|
high=op.domain[1],
|
|
)
|
|
contig = contig[:1, :, :, :, :, :, :, :, :, :, :, :]
|
|
contig2 = torch.empty(contig.size(), device=device, dtype=dtype)
|
|
contig2.copy_(contig)
|
|
|
|
self.assertTrue(contig.is_contiguous())
|
|
self.assertTrue(contig2.is_contiguous())
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, contig)
|
|
self.assertEqual(op(contig, **torch_kwargs), op(contig2, **torch_kwargs))
|
|
|
|
# Tests that computation on a multiple batches is the same as
|
|
# per-batch computation.
|
|
@ops(unary_ufuncs)
|
|
@slowTestIf(IS_WINDOWS)
|
|
def test_batch_vs_slicing(self, device, dtype, op):
|
|
input = make_tensor(
|
|
(1024, 512), dtype=dtype, device=device, low=op.domain[0], high=op.domain[1]
|
|
)
|
|
|
|
torch_kwargs, _ = op.sample_kwargs(device, dtype, input)
|
|
actual = op(input, **torch_kwargs)
|
|
|
|
all_outs = [op(slice, **torch_kwargs) for slice in input]
|
|
if is_iterable_of_tensors(actual):
|
|
expected = [
|
|
torch.stack([out[i] for out in all_outs]) for i in range(len(actual))
|
|
]
|
|
else:
|
|
expected = torch.stack(all_outs)
|
|
|
|
self.assertEqual(actual, expected)
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.bool, torch.half))
|
|
def test_nan_to_num(self, device, dtype):
|
|
for contiguous in [False, True]:
|
|
x = make_tensor((64, 64), low=0.0, high=100.0, dtype=dtype, device=device)
|
|
|
|
if dtype.is_floating_point:
|
|
# Add extremal values.
|
|
extremals = [float("nan"), float("inf"), -float("inf")]
|
|
for idx, extremal in zip(torch.randint(0, 63, (3,)), extremals):
|
|
x[idx, :] = extremal
|
|
|
|
if not contiguous:
|
|
x = x.T
|
|
|
|
# With args
|
|
nan = random.random()
|
|
posinf = random.random() * 5
|
|
neginf = random.random() * 10
|
|
|
|
self.compare_with_numpy(
|
|
lambda x: x.nan_to_num(nan=nan, posinf=posinf),
|
|
lambda x: np.nan_to_num(x, nan=nan, posinf=posinf),
|
|
x,
|
|
)
|
|
self.compare_with_numpy(
|
|
lambda x: x.nan_to_num(posinf=posinf, neginf=neginf),
|
|
lambda x: np.nan_to_num(x, posinf=posinf, neginf=neginf),
|
|
x,
|
|
)
|
|
|
|
# Out Variant
|
|
out = torch.empty_like(x)
|
|
result = torch.nan_to_num(x)
|
|
torch.nan_to_num(x, out=out)
|
|
self.assertEqual(result, out)
|
|
|
|
result = torch.nan_to_num(x, nan=nan, posinf=posinf, neginf=neginf)
|
|
torch.nan_to_num(x, out=out, nan=nan, posinf=posinf, neginf=neginf)
|
|
self.assertEqual(result, out)
|
|
|
|
@onlyCPU
|
|
def test_nan_to_num_bfloat16(self, device):
|
|
def test_dtype(fn, input, dtype):
|
|
input = input.detach().clone().to(dtype=dtype).requires_grad_(True)
|
|
input2 = input.detach().clone().float().requires_grad_(True)
|
|
out = fn(input)
|
|
out.sum().backward()
|
|
out2 = fn(input2)
|
|
out2.sum().backward()
|
|
self.assertEqual(out.dtype, dtype)
|
|
self.assertEqual(input.grad.dtype, dtype)
|
|
self.assertEqual(out, out2, exact_dtype=False)
|
|
self.assertEqual(input.grad, input2.grad, exact_dtype=False)
|
|
|
|
def func():
|
|
return torch.nan_to_num
|
|
|
|
shapes = [[1, 3, 6, 6], [1, 3, 6, 128], [1, 3, 256, 256]]
|
|
for shape in shapes:
|
|
x = torch.randn(shape, device=device)
|
|
extremals = [float("nan"), float("inf"), -float("inf")]
|
|
for id1, id2, extremal in zip(
|
|
torch.randint(0, 2, (3,)), torch.randint(0, 5, (3,)), extremals
|
|
):
|
|
x[0, id1, id2, :] = extremal
|
|
test_dtype(func(), x, torch.bfloat16)
|
|
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_nan_to_num_complex(self, device, dtype):
|
|
value_dtype = torch.tensor([], dtype=dtype).real.dtype
|
|
|
|
def gen_tensor(a):
|
|
return torch.view_as_complex(
|
|
torch.tensor(a, dtype=value_dtype, device=device)
|
|
)
|
|
|
|
for extremal, kwarg_name in zip(
|
|
["nan", "inf", "-inf"], ["nan", "posinf", "neginf"]
|
|
):
|
|
a = gen_tensor([123, float(extremal)])
|
|
res = torch.nan_to_num(a, **{kwarg_name: 12})
|
|
res_check = gen_tensor([123, 12])
|
|
self.assertEqual(res, res_check)
|
|
|
|
a = gen_tensor([float(extremal), 456])
|
|
res = torch.nan_to_num(a, **{kwarg_name: 21})
|
|
res_check = gen_tensor([21, 456])
|
|
self.assertEqual(res, res_check)
|
|
|
|
@dtypes(torch.cdouble)
|
|
def test_complex_edge_values(self, device, dtype):
|
|
# sqrt Test Reference: https://github.com/pytorch/pytorch/pull/47424
|
|
x = torch.tensor(0.0 - 1.0e20j, dtype=dtype, device=device)
|
|
self.compare_with_numpy(torch.sqrt, np.sqrt, x)
|
|
# acos test reference: https://github.com/pytorch/pytorch/issues/42952
|
|
if not (dtype == torch.cdouble and "cuda" in device):
|
|
self.compare_with_numpy(torch.acos, np.arccos, x)
|
|
|
|
x = torch.tensor(
|
|
(-1.0e60 if dtype == torch.cdouble else -1.0e20) - 4988429.2j,
|
|
dtype=dtype,
|
|
device=device,
|
|
)
|
|
self.compare_with_numpy(torch.sqrt, np.sqrt, x)
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
|
|
@dtypes(torch.float, torch.double)
|
|
def test_digamma_special(self, device, dtype):
|
|
# Based on SciPy test for the following special values.
|
|
# Reference:
|
|
# https://github.com/scipy/scipy/blob/3a8a3a1d4657254a6611e77e9c28feafa26e6645/scipy/special/tests/test_digamma.py#L22
|
|
euler = 0.57721566490153286
|
|
dataset = [
|
|
(0.0, -0.0),
|
|
(1, -euler),
|
|
(0.5, -2 * math.log(2) - euler),
|
|
(1 / 3, -math.pi / (2 * math.sqrt(3)) - 3 * math.log(3) / 2 - euler),
|
|
(1 / 4, -math.pi / 2 - 3 * math.log(2) - euler),
|
|
(
|
|
1 / 6,
|
|
-math.pi * math.sqrt(3) / 2
|
|
- 2 * math.log(2)
|
|
- 3 * math.log(3) / 2
|
|
- euler,
|
|
),
|
|
(
|
|
1 / 8,
|
|
-math.pi / 2
|
|
- 4 * math.log(2)
|
|
- (math.pi + math.log(2 + math.sqrt(2)) - math.log(2 - math.sqrt(2)))
|
|
/ math.sqrt(2)
|
|
- euler,
|
|
),
|
|
]
|
|
x = torch.tensor(dataset, device=device, dtype=dtype)
|
|
self.compare_with_numpy(torch.digamma, scipy.special.digamma, x)
|
|
|
|
@unittest.skipIf(not TEST_SCIPY, "Requires SciPy")
|
|
@dtypes(torch.float, torch.double)
|
|
def test_digamma(self, device, dtype):
|
|
# Tests pole behavior
|
|
tensor = torch.tensor(
|
|
[
|
|
-0.999999994,
|
|
-1.999999994,
|
|
-2.0000000111,
|
|
-100.99999994,
|
|
0.000000111,
|
|
-1931.99999994,
|
|
-0.000000111,
|
|
0,
|
|
-0,
|
|
-1,
|
|
-2,
|
|
-931,
|
|
],
|
|
dtype=dtype,
|
|
device=device,
|
|
)
|
|
self.compare_with_numpy(torch.digamma, scipy.special.digamma, tensor)
|
|
|
|
@dtypes(*floating_types_and(torch.half))
|
|
def test_frexp(self, device, dtype):
|
|
input = make_tensor((50, 50), dtype=dtype, device=device)
|
|
mantissa, exponent = torch.frexp(input)
|
|
np_mantissa, np_exponent = np.frexp(input.cpu().numpy())
|
|
|
|
self.assertEqual(mantissa, np_mantissa)
|
|
self.assertEqual(exponent, np_exponent)
|
|
|
|
# torch.frexp returns exponent in int32 to be compatible with np.frexp
|
|
self.assertTrue(exponent.dtype == torch.int32)
|
|
self.assertTrue(torch_to_numpy_dtype_dict[exponent.dtype] == np_exponent.dtype)
|
|
|
|
def test_frexp_assert_raises(self, device):
|
|
invalid_input_dtypes = integral_types_and(torch.bool) + complex_types()
|
|
for dtype in invalid_input_dtypes:
|
|
input = make_tensor((50, 50), dtype=dtype, device=device)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"torch\.frexp\(\) only supports floating-point dtypes"
|
|
):
|
|
torch.frexp(input)
|
|
|
|
for dtype in floating_types_and(torch.half):
|
|
input = make_tensor((50, 50), dtype=dtype, device=device)
|
|
|
|
dtypes = list(
|
|
all_types_and_complex_and(torch.bool, torch.half, torch.bfloat16)
|
|
)
|
|
dtypes.remove(dtype)
|
|
for mantissa_dtype in dtypes:
|
|
mantissa = torch.empty_like(input, dtype=mantissa_dtype)
|
|
exponent = torch.empty_like(input, dtype=torch.int)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"torch\.frexp\(\) expects mantissa to have dtype .+ but got .+",
|
|
):
|
|
torch.frexp(input, out=(mantissa, exponent))
|
|
|
|
dtypes.append(dtype)
|
|
dtypes.remove(torch.int)
|
|
for exponent_dtype in dtypes:
|
|
mantissa = torch.empty_like(input)
|
|
exponent = torch.empty_like(input, dtype=exponent_dtype)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
r"torch\.frexp\(\) expects exponent to have int dtype but got .+",
|
|
):
|
|
torch.frexp(input, out=(mantissa, exponent))
|
|
|
|
def test_polygamma_neg(self, device):
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, r"polygamma\(n, x\) does not support negative n\."
|
|
):
|
|
torch.polygamma(-1, torch.tensor([1.0, 2.0], device=device))
|
|
|
|
# TODO resolve with opinfos
|
|
@onlyCPU
|
|
def test_op_invert(self, device):
|
|
res = 0xFFFF - torch.arange(127, dtype=torch.int8)
|
|
for dtype in (torch.uint8, torch.int8, torch.int16, torch.int32, torch.int64):
|
|
a = torch.arange(127, dtype=dtype)
|
|
self.assertEqual(res.to(dtype), ~a)
|
|
|
|
self.assertEqual(torch.tensor([True, False]), ~torch.tensor([False, True]))
|
|
|
|
# test exceptions
|
|
for dtype in (torch.half, torch.float, torch.double):
|
|
a = torch.zeros(10, dtype=dtype)
|
|
with self.assertRaises(TypeError):
|
|
~a
|
|
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_abs_angle_complex_to_float(self, device, dtype):
|
|
# Constructs random complex values
|
|
from random import random
|
|
|
|
random_vals = []
|
|
for multiplier in (-1, 1, -10, 10, -100, 100):
|
|
for _ in range(10):
|
|
random_vals.append(
|
|
complex(random() * multiplier, random() * multiplier)
|
|
)
|
|
|
|
for vals in (random_vals, []):
|
|
a = np.array(vals, dtype=torch_to_numpy_dtype_dict[dtype])
|
|
t = torch.tensor(vals, device=device, dtype=dtype)
|
|
|
|
for fn_name in ("abs", "angle"):
|
|
torch_fn = getattr(torch, fn_name)
|
|
np_fn = getattr(np, fn_name)
|
|
|
|
# Tests function
|
|
np_result = torch.from_numpy(np_fn(a))
|
|
torch_result = torch_fn(t).cpu()
|
|
self.assertEqual(np_result, torch_result, exact_dtype=True)
|
|
|
|
# Tests float out
|
|
float_dtype = (
|
|
torch.float32 if dtype is torch.complex64 else torch.float64
|
|
)
|
|
np_float_out = np_fn(a).astype(torch_to_numpy_dtype_dict[float_dtype])
|
|
float_out = torch.empty_like(t, dtype=float_dtype)
|
|
torch_fn(t, out=float_out)
|
|
self.assertEqual(torch.from_numpy(np_float_out), float_out.cpu())
|
|
|
|
# Tests float out (resized out)
|
|
float_out = torch.empty(1, device=device, dtype=float_dtype)
|
|
torch_fn(t, out=float_out)
|
|
self.assertEqual(torch.from_numpy(np_float_out), float_out.cpu())
|
|
|
|
# Tests complex out
|
|
np_complex_out = np_fn(a).astype(torch_to_numpy_dtype_dict[dtype])
|
|
complex_out = torch.empty_like(t)
|
|
torch_fn(t, out=complex_out)
|
|
self.assertEqual(torch.from_numpy(np_complex_out), complex_out.cpu())
|
|
|
|
# Tests complex out (resized out)
|
|
complex_out = torch.empty(0, device=device, dtype=dtype)
|
|
torch_fn(t, out=complex_out)
|
|
self.assertEqual(torch.from_numpy(np_complex_out), complex_out.cpu())
|
|
|
|
# Tests long out behavior (expected failure)
|
|
long_out = torch.empty(0, device=device, dtype=torch.long)
|
|
with self.assertRaises(RuntimeError):
|
|
torch_fn(t, out=long_out)
|
|
|
|
# Tests inplace
|
|
if fn_name == "abs":
|
|
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
|
|
np_fn(a, out=a)
|
|
if dtype.is_complex:
|
|
with self.assertRaisesRegex(
|
|
RuntimeError,
|
|
"In-place abs is not supported for complex tensors.",
|
|
):
|
|
torch_inplace_method(t)
|
|
return
|
|
torch_inplace_method(t)
|
|
self.assertEqual(torch.from_numpy(a), t.cpu())
|
|
|
|
# Note: angle does not have an in-place variant
|
|
if fn_name == "angle":
|
|
with self.assertRaises(AttributeError):
|
|
torch_inplace_method = getattr(torch.Tensor, fn_name + "_")
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.complex64)
|
|
def test_tan_complex_cuda_matches_numpy(self, device, dtype):
|
|
# Focused accuracy check for complex tan on CUDA against NumPy reference
|
|
# Includes values near tan singularities on the real axis
|
|
eps = 1e-3
|
|
specials = torch.tensor(
|
|
[
|
|
math.pi / 2 - eps,
|
|
math.pi / 2 + eps,
|
|
-math.pi / 2 - eps,
|
|
-math.pi / 2 + eps,
|
|
],
|
|
device=device,
|
|
dtype=torch.float32,
|
|
)
|
|
real = torch.randn(1024, device=device, dtype=torch.float32) * (2 * math.pi)
|
|
imag = torch.randn(1024, device=device, dtype=torch.float32) * 5.0
|
|
real = torch.cat([real, specials])
|
|
imag = torch.cat(
|
|
[
|
|
imag,
|
|
torch.linspace(
|
|
-3,
|
|
3,
|
|
steps=specials.numel(),
|
|
device=device,
|
|
),
|
|
]
|
|
)
|
|
z = torch.complex(real, imag).to(dtype)
|
|
self.compare_with_numpy(torch.tan, np.tan, z)
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.complex64)
|
|
def test_tanh_complex_cuda_matches_numpy(self, device, dtype):
|
|
# Focused accuracy check for complex tanh on CUDA against NumPy reference
|
|
real = torch.randn(2048, device=device, dtype=torch.float32) * (2 * math.pi)
|
|
imag = torch.randn(2048, device=device, dtype=torch.float32) * 5.0
|
|
z = torch.complex(real, imag).to(dtype)
|
|
self.compare_with_numpy(torch.tanh, np.tanh, z)
|
|
|
|
def check_internal_mem_overlap(
|
|
self, inplace_op, num_inputs, dtype, device, expected_failure=False
|
|
):
|
|
if isinstance(inplace_op, str):
|
|
inplace_op = getattr(torch.Tensor, inplace_op)
|
|
input = torch.randn(1, dtype=dtype, device=device).expand(3, 3)
|
|
inputs = [input] + [torch.randn_like(input) for i in range(num_inputs - 1)]
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, "single memory location"):
|
|
inplace_op(*inputs)
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, "single memory location"):
|
|
inplace_op(*inputs)
|
|
|
|
def unary_check_input_output_mem_overlap(
|
|
self, data, sz, op, expected_failure=False
|
|
):
|
|
def _test(op, output, input):
|
|
output_exp = torch.empty_like(output)
|
|
op(input, out=output_exp)
|
|
self.assertEqual(op(input, out=output), output_exp, msg=op.__name__)
|
|
|
|
# output is identical to input:
|
|
_test(op, output=data[0:sz], input=data[0:sz])
|
|
# output and input are independent:
|
|
_test(op, output=data[0:sz], input=data[sz : 2 * sz])
|
|
# output partially overlaps with input:
|
|
if not expected_failure:
|
|
with self.assertRaisesRegex(RuntimeError, "unsupported operation"):
|
|
_test(op, data[0:sz], data[1 : sz + 1])
|
|
else:
|
|
with self.assertRaises(AssertionError):
|
|
with self.assertRaisesRegex(RuntimeError, "unsupported operation"):
|
|
_test(op, data[0:sz], data[1 : sz + 1])
|
|
|
|
# TODO: run on non-native device types
|
|
# https://github.com/pytorch/pytorch/issues/126474
|
|
@xfailIfTorchDynamo
|
|
@dtypes(torch.double)
|
|
def test_unary_out_op_mem_overlap(self, device, dtype):
|
|
sz = 3
|
|
doubles = torch.randn(2 * sz, dtype=dtype, device=device)
|
|
positives = torch.randint(1, 100, (2 * sz,), device=device).double()
|
|
ints = torch.randint(-100, 100, (2 * sz,), device=device)
|
|
unary_mem_overlap_cases = [
|
|
("abs", doubles, True, True, "cpu"),
|
|
("abs", doubles, True, True, "cuda"),
|
|
("acos", doubles, True, True, "cpu"),
|
|
("acos", doubles, True, True, "cuda"),
|
|
("asin", doubles, True, True, "cpu"),
|
|
("asin", doubles, True, True, "cuda"),
|
|
("atan", doubles, True, True, "cpu"),
|
|
("atan", doubles, True, True, "cuda"),
|
|
("acosh", doubles, True, True, "cpu"),
|
|
("acosh", doubles, True, True, "cuda"),
|
|
("asinh", doubles, True, True, "cpu"),
|
|
("asinh", doubles, True, True, "cuda"),
|
|
("atanh", doubles, True, True, "cpu"),
|
|
("atanh", doubles, True, True, "cuda"),
|
|
("bitwise_not", ints, True, True, "cpu"),
|
|
("bitwise_not", ints, True, True, "cuda"),
|
|
("ceil", doubles, True, True, "cpu"),
|
|
("ceil", doubles, True, True, "cuda"),
|
|
("cos", doubles, True, True, "cpu"),
|
|
("cos", doubles, True, True, "cuda"),
|
|
("cosh", doubles, True, True, "cpu"),
|
|
("cosh", doubles, True, True, "cuda"),
|
|
("digamma", doubles, True, True, "cpu"),
|
|
("erf", doubles, True, True, "cpu"),
|
|
("erf", doubles, True, True, "cuda"),
|
|
("erfc", doubles, True, True, "cpu"),
|
|
("erfc", doubles, True, True, "cuda"),
|
|
("erfinv", doubles, True, True, "cpu"),
|
|
("erfinv", doubles, True, True, "cuda"),
|
|
("exp", doubles, True, True, "cpu"),
|
|
("exp", doubles, True, True, "cuda"),
|
|
("exp2", doubles, True, True, "cpu"),
|
|
("exp2", doubles, True, True, "cuda"),
|
|
("expm1", doubles, True, True, "cpu"),
|
|
("expm1", doubles, True, True, "cuda"),
|
|
("floor", doubles, True, True, "cpu"),
|
|
("floor", doubles, True, True, "cuda"),
|
|
("frac", doubles, True, True, "cpu"),
|
|
("frac", doubles, True, True, "cuda"),
|
|
("i0", doubles, True, True, "cpu"),
|
|
("i0", doubles, True, True, "cuda"),
|
|
("log", positives, True, True, "cpu"),
|
|
("log", positives, True, True, "cuda"),
|
|
("log10", positives, True, True, "cpu"),
|
|
("log10", positives, True, True, "cuda"),
|
|
("log1p", positives, True, True, "cpu"),
|
|
("log1p", positives, True, True, "cuda"),
|
|
("log2", positives, True, True, "cpu"),
|
|
("log2", positives, True, True, "cuda"),
|
|
("neg", doubles, True, True, "cpu"),
|
|
("neg", doubles, True, True, "cuda"),
|
|
("reciprocal", doubles, True, True, "cpu"),
|
|
("reciprocal", doubles, True, True, "cuda"),
|
|
("round", doubles, True, True, "cpu"),
|
|
("round", doubles, True, True, "cuda"),
|
|
("rsqrt", positives, True, True, "cpu"),
|
|
("rsqrt", positives, True, True, "cuda"),
|
|
("sin", doubles, True, True, "cpu"),
|
|
("sin", doubles, True, True, "cuda"),
|
|
("sinh", doubles, True, True, "cpu"),
|
|
("sinh", doubles, False, True, "cuda"),
|
|
("sigmoid", doubles, True, True, "cpu"),
|
|
("sigmoid", doubles, True, True, "cuda"),
|
|
("logit", doubles, True, True, "cpu"),
|
|
("logit", doubles, True, True, "cuda"),
|
|
("sqrt", doubles, True, True, "cpu"),
|
|
("sqrt", doubles, False, True, "cuda"),
|
|
("tan", doubles, True, True, "cpu"),
|
|
("tan", doubles, True, True, "cuda"),
|
|
("tanh", doubles, True, True, "cpu"),
|
|
("tanh", doubles, True, True, "cuda"),
|
|
("trunc", doubles, True, True, "cpu"),
|
|
("trunc", doubles, True, True, "cuda"),
|
|
]
|
|
|
|
for (
|
|
fn,
|
|
inputs,
|
|
has_input_output_mem_overlap_check,
|
|
has_internal_mem_overlap_check,
|
|
dev,
|
|
) in unary_mem_overlap_cases:
|
|
if dev != device:
|
|
continue
|
|
out_fn = getattr(torch, fn)
|
|
in_fn = getattr(torch.Tensor, fn + "_")
|
|
|
|
self.unary_check_input_output_mem_overlap(
|
|
inputs,
|
|
sz,
|
|
out_fn,
|
|
expected_failure=not has_input_output_mem_overlap_check,
|
|
)
|
|
|
|
self.check_internal_mem_overlap(
|
|
in_fn,
|
|
1,
|
|
dtype,
|
|
dev,
|
|
expected_failure=not has_internal_mem_overlap_check,
|
|
)
|
|
|
|
# TODO: opinfo hardshrink
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double, torch.bfloat16)
|
|
def test_hardshrink(self, device, dtype):
|
|
data = torch.tensor([1, 0.5, 0.3, 0.6], dtype=dtype, device=device).view(2, 2)
|
|
self.assertEqual(
|
|
torch.tensor([1, 0.5, 0, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.hardshrink(0.3),
|
|
)
|
|
self.assertEqual(
|
|
torch.tensor([1, 0, 0, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.hardshrink(0.5),
|
|
)
|
|
|
|
# test default lambd=0.5
|
|
self.assertEqual(data.hardshrink(), data.hardshrink(0.5))
|
|
|
|
# test non-contiguous case
|
|
self.assertEqual(
|
|
torch.tensor([1, 0, 0.5, 0.6], dtype=dtype, device=device).view(2, 2),
|
|
data.t().hardshrink(0.3),
|
|
)
|
|
|
|
@onlyCPU
|
|
@dtypes(torch.float, torch.double, torch.bfloat16)
|
|
def test_hardshrink_edge_cases(self, device, dtype) -> None:
|
|
def h(values, l_expected):
|
|
for l, expected in l_expected.items():
|
|
values_tensor = torch.tensor(
|
|
[float(v) for v in values], dtype=dtype, device=device
|
|
)
|
|
expected_tensor = torch.tensor(
|
|
[float(v) for v in expected], dtype=dtype, device=device
|
|
)
|
|
self.assertEqual(
|
|
expected_tensor == values_tensor.hardshrink(l),
|
|
torch.ones_like(values_tensor, dtype=torch.bool),
|
|
)
|
|
|
|
def test_helper(min, max):
|
|
h(
|
|
[0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
{
|
|
0.0: [0.0, min, -min, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
min: [0.0, 0.0, 0.0, 0.1, -0.1, 1.0, -1.0, max, -max, inf, -inf],
|
|
0.1: [0.0, 0.0, 0.0, 0.0, 0.0, 1.0, -1.0, max, -max, inf, -inf],
|
|
1.0: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, max, -max, inf, -inf],
|
|
max: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, inf, -inf],
|
|
inf: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
},
|
|
)
|
|
|
|
test_helper(torch.finfo(dtype).tiny, torch.finfo(dtype).max)
|
|
|
|
@onlyCPU
|
|
@slowTest
|
|
@dtypes(torch.float)
|
|
@unittest.skipIf(True, "Insufficient memory on linux.(2|4)xlarge")
|
|
def test_exp_slow(self, device, dtype):
|
|
# Test for https://github.com/pytorch/pytorch/issues/17271
|
|
# This is pretty slow on my Macbook but it only takes a few
|
|
# seconds on a beefy Xeon server
|
|
a = torch.exp(torch.ones(2**31, dtype=dtype, device=device))
|
|
b = torch.exp(torch.ones(1, dtype=dtype, device=device))
|
|
self.assertEqual(a, b.expand(2**31))
|
|
|
|
@precisionOverride(
|
|
{torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002}
|
|
)
|
|
@dtypes(torch.float, torch.double, torch.bfloat16)
|
|
def test_hardswish(self, device, dtype):
|
|
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
|
|
expectedOutput = np.multiply(
|
|
inputValues, np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0
|
|
)
|
|
|
|
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
|
|
expectedOutputTensor = torch.tensor(expectedOutput, dtype=dtype, device=device)
|
|
|
|
# normal
|
|
self.assertEqual(
|
|
torch.nn.functional.hardswish(inputTensor), expectedOutputTensor
|
|
)
|
|
|
|
# inplace
|
|
inputTensorCpy = inputTensor.detach().clone()
|
|
torch.nn.functional.hardswish(inputTensorCpy, inplace=True)
|
|
self.assertEqual(inputTensorCpy, expectedOutputTensor)
|
|
|
|
@precisionOverride(
|
|
{torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002}
|
|
)
|
|
@dtypes(torch.float, torch.double, torch.bfloat16)
|
|
def test_hardsigmoid(self, device, dtype):
|
|
inputValues = [-1000, -4, -3, -2, 0, 2, 3, 4, 1000]
|
|
expectedOutput = np.minimum(np.maximum((np.add(inputValues, 3)), 0), 6) / 6.0
|
|
|
|
inputTensor = torch.tensor(inputValues, dtype=dtype, device=device)
|
|
|
|
# normal
|
|
self.assertEqual(
|
|
torch.nn.functional.hardsigmoid(inputTensor),
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device),
|
|
)
|
|
|
|
# inplace
|
|
inputTensorCpy = inputTensor.detach().clone()
|
|
self.assertEqual(
|
|
torch.nn.functional.hardsigmoid(inputTensorCpy, inplace=True),
|
|
torch.tensor(expectedOutput, dtype=dtype, device=device),
|
|
)
|
|
|
|
@precisionOverride(
|
|
{torch.bfloat16: 1e-2, torch.float: 0.0002, torch.double: 0.0002}
|
|
)
|
|
@dtypes(torch.float, torch.double, torch.bfloat16)
|
|
def test_hardsigmoid_backward(self, device, dtype):
|
|
inputValues = [-3.0, 3.0, -2.0, 2.0, -6.0, 6.0]
|
|
expectedValues = [0.0, 0.0, 1.0 / 6.0, 1.0 / 6.0, 0.0, 0.0]
|
|
inputTensor = torch.tensor(
|
|
inputValues, dtype=dtype, device=device
|
|
).requires_grad_()
|
|
expetedTensor = torch.tensor(expectedValues, dtype=dtype, device=device)
|
|
out = torch.nn.functional.hardsigmoid(inputTensor)
|
|
out.backward(torch.ones_like(inputTensor))
|
|
self.assertEqual(inputTensor.grad, expetedTensor)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(torch.float, torch.double)
|
|
def test_silu(self, device, dtype):
|
|
input_np = np.random.randn(5, 8)
|
|
special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
|
|
input_np = np.concatenate((input_np, special_input), axis=0).astype(
|
|
torch_to_numpy_dtype_dict[dtype]
|
|
)
|
|
expected_output_np = input_np * scipy.special.expit(input_np)
|
|
|
|
expected_output = torch.from_numpy(expected_output_np).to(device)
|
|
expected_output_noncontig = expected_output.transpose(0, 1)
|
|
|
|
atol = 1e-6
|
|
rtol = 1e-6
|
|
|
|
input = torch.from_numpy(input_np).clone().contiguous().to(device)
|
|
self.assertEqual(
|
|
torch.nn.functional.silu(input), expected_output, atol=atol, rtol=rtol
|
|
)
|
|
self.assertEqual(
|
|
torch.nn.functional.silu(input, inplace=True),
|
|
expected_output,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
)
|
|
|
|
input = torch.from_numpy(input_np).clone().to(device)
|
|
input_noncontig = input.transpose(0, 1)
|
|
self.assertEqual(
|
|
torch.nn.functional.silu(input_noncontig),
|
|
expected_output_noncontig,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
)
|
|
self.assertEqual(
|
|
torch.nn.functional.silu(input_noncontig, inplace=True),
|
|
expected_output_noncontig,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
)
|
|
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_silu_complex(self, device, dtype):
|
|
atol = 1e-6
|
|
rtol = 1e-6
|
|
inp_outs = [
|
|
(0.2 + 0.3j, 0.08775215595960617065 + 0.18024823069572448730j),
|
|
(1e-19 + 1e-18j, 4.99999984132761269448e-20 + 5.00000022906852482872e-19j),
|
|
(-1.0 + 2.0j, -0.78546208143234252930 + -0.44626939296722412109j),
|
|
(0.0 + 0.5j, -0.06383547931909561157 + 0.25000000000000000000j),
|
|
(2.0j, -1.55740761756896972656 + 0.99999988079071044922j),
|
|
]
|
|
|
|
for inp, out in inp_outs:
|
|
res = torch.nn.functional.silu(
|
|
torch.tensor(inp, dtype=dtype, device=device)
|
|
)
|
|
self.assertFalse(torch.any(torch.isnan(res)))
|
|
self.assertEqual(res.real, out.real, atol=atol, rtol=rtol)
|
|
self.assertEqual(res.imag, out.imag, atol=atol, rtol=rtol)
|
|
|
|
for inp, out in inp_outs:
|
|
res = torch.nn.functional.silu(
|
|
torch.tensor(inp, dtype=dtype, device=device), inplace=True
|
|
)
|
|
self.assertFalse(torch.any(torch.isnan(res)))
|
|
self.assertEqual(res.real, out.real, atol=atol, rtol=rtol)
|
|
self.assertEqual(res.imag, out.imag, atol=atol, rtol=rtol)
|
|
|
|
# It is not obvious how to merge this into OpInfo because these inputs
|
|
# succeed for gradcheck but are expected to fail for gradgradcheck
|
|
@dtypes(torch.double)
|
|
def test_sinc(self, device, dtype):
|
|
# The derivative of sinc(x) at x=0 has to be special cased.
|
|
# A naive computation will result in 0/0 -> NaN.
|
|
# We also need to be careful when we are very close to 0, as the
|
|
# derivative's denominator is squared, and there are some floats
|
|
# that are positive and whose squares are zero.
|
|
a = torch.tensor(
|
|
[0.0, torch.finfo(torch.double).tiny, 1.0],
|
|
dtype=dtype,
|
|
requires_grad=True,
|
|
device=device,
|
|
)
|
|
gradcheck(torch.sinc, a)
|
|
|
|
@skipIfNoSciPy
|
|
@dtypes(torch.float, torch.double)
|
|
def test_mish(self, device, dtype):
|
|
input_np = np.random.randn(5, 8)
|
|
special_input = [[-1000, -1, -0.1, 0, 0.5, 1, 2, 1000]]
|
|
input_np = np.concatenate((input_np, special_input), axis=0).astype(
|
|
torch_to_numpy_dtype_dict[dtype]
|
|
)
|
|
expected_output_np = input_np * np.tanh(np.log1p(np.exp(input_np)))
|
|
|
|
expected_output = torch.from_numpy(expected_output_np).to(device)
|
|
expected_output_noncontig = expected_output.transpose(0, 1)
|
|
|
|
atol = 1e-6
|
|
rtol = 1e-6
|
|
|
|
input = torch.from_numpy(input_np).clone().contiguous().to(device)
|
|
self.assertEqual(
|
|
torch.nn.functional.mish(input), expected_output, atol=atol, rtol=rtol
|
|
)
|
|
self.assertEqual(
|
|
torch.nn.functional.mish(input, inplace=True),
|
|
expected_output,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
)
|
|
|
|
input = torch.from_numpy(input_np).clone().to(device)
|
|
input_noncontig = input.transpose(0, 1)
|
|
self.assertEqual(
|
|
torch.nn.functional.mish(input_noncontig),
|
|
expected_output_noncontig,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
)
|
|
self.assertEqual(
|
|
torch.nn.functional.mish(input_noncontig, inplace=True),
|
|
expected_output_noncontig,
|
|
atol=atol,
|
|
rtol=rtol,
|
|
)
|
|
|
|
@dtypes(torch.complex64, torch.complex128)
|
|
def test_log1p_complex(self, device, dtype):
|
|
# The output values here were obtained using arbitrary precision math (mpmath)
|
|
# and double checked with WolframAlpha.
|
|
# Not using numpy's log1p here because by the time of writing this,
|
|
# np.log1p has precision problems for small complex input values, see here:
|
|
# https://github.com/numpy/numpy/issues/22609
|
|
inp_outs = [
|
|
(0.2 + 0.3j, 0.21263386770217202 + 0.24497866312686414j),
|
|
(1e-19 + 1e-18j, 1e-19 + 1e-18j),
|
|
(1e-18 + 0.1j, 0.00497517 + 0.0996687j),
|
|
(0.1 + 1e-18j, 0.0953102 + 9.090909090909090909e-19j),
|
|
(0.5 + 0j, 0.40546510810816 + 0j),
|
|
(0.0 + 0.5j, 0.111571776 + 0.463647609j),
|
|
(2.0 + 1.0j, 1.151292546497023 + 0.3217505543966422j),
|
|
(-1.0 + 2.0j, 0.6931471805599453 + 1.570796326794897j),
|
|
(2.0j, 0.80471895621705014 + 1.1071487177940904j),
|
|
(-2.0j, 0.80471895621705014 - 1.1071487177940904j),
|
|
]
|
|
# test the extreme values
|
|
if dtype == torch.complex128:
|
|
inp_outs += [
|
|
(-1 + 1e250j, 575.6462732485114 + 1.5707963267948966j),
|
|
(1e250 + 1j, 575.6462732485114 + 1e-250j),
|
|
(1e250 + 1e250j, 575.9928468387914 + 0.7853981633974483j),
|
|
(1e-250 + 1e250j, 575.6462732485114 + 1.5707963267948966j),
|
|
(1e-250 + 2e-250j, 1e-250 + 2e-250j),
|
|
(1e250 + 1e-250j, 575.6462732485114 + 0.0j),
|
|
]
|
|
elif dtype == torch.complex64:
|
|
inp_outs += [
|
|
(-1 + 1e30j, 69.07755278982137 + 1.5707963267948966j),
|
|
(1e30 + 1j, 69.07755278982137 + 1e-30j),
|
|
(1e30 + 1e30j, 69.42412638010134 + 0.7853981633974483j),
|
|
(1e-30 + 1e30j, 69.07755278982137 + 1.5707963267948966j),
|
|
(1e-30 + 2e-30j, 1e-30 + 2e-30j),
|
|
(1e30 + 1e-30j, 69.07755278982137 + 0.0j),
|
|
]
|
|
|
|
# test the log1p individually
|
|
for inp, out in inp_outs:
|
|
res = torch.log1p(torch.tensor(inp, dtype=dtype, device=device))
|
|
self.assertFalse(torch.any(torch.isnan(res)))
|
|
# setting up atol == 0.0 because some part has very small values
|
|
self.assertEqual(res.real, out.real, atol=0.0, rtol=1e-6)
|
|
self.assertEqual(res.imag, out.imag, atol=0.0, rtol=1e-6)
|
|
|
|
# test the log1p in tensor
|
|
inp_lst, out_lst = (list(elmt) for elmt in zip(*inp_outs))
|
|
inp_tens = torch.tensor(inp_lst, dtype=dtype, device=device)
|
|
out_tens = torch.tensor(out_lst, dtype=dtype, device=device)
|
|
res_tens = torch.log1p(inp_tens)
|
|
self.assertEqual(res_tens.real, out_tens.real, atol=0.0, rtol=1e-6)
|
|
self.assertEqual(res_tens.imag, out_tens.imag, atol=0.0, rtol=1e-6)
|
|
|
|
# do ops like threshold need a test_unary(_nonufunc) test suite?
|
|
@onlyCPU
|
|
@dtypes(*get_all_math_dtypes("cpu"))
|
|
def test_threshold(self, device, dtype):
|
|
if dtype != torch.uint8 and dtype != torch.float16 and not dtype.is_complex:
|
|
# 100 is wide enough to use AVX2 instructions for all types
|
|
x = (
|
|
torch.randn(100, dtype=torch.float, device=device)
|
|
.sign()
|
|
.to(dtype=dtype)
|
|
)
|
|
y = torch.threshold(x, 0, 0)
|
|
self.assertTrue(y.le(0).any())
|
|
|
|
def _helper_test_igamma(self, loglo, loghi, device, dtype, torch_fcn, scipy_fcn):
|
|
exp1 = 2.71828182846
|
|
vec1 = torch.logspace(
|
|
loglo, loghi, steps=500, base=exp1, dtype=torch.float64, device=device
|
|
).unsqueeze(-1)
|
|
vec1 = vec1.to(dtype)
|
|
inputs = [
|
|
(vec1, vec1.transpose(0, 1)),
|
|
(vec1, vec1), # for large number, it should approach 0.5
|
|
(vec1, 0.5 * vec1), # test for considerable ratio
|
|
(vec1, 2.0 * vec1),
|
|
(vec1[::2, :], vec1[::2, :]), # contiguous/noncontiguous tests
|
|
(vec1[::2, :], vec1[: vec1.shape[0] // 2, :]),
|
|
(vec1[: vec1.shape[0] // 2, :], vec1[::2, :]),
|
|
]
|
|
half_prec = dtype in [torch.bfloat16, torch.float16]
|
|
for input0, input1 in inputs:
|
|
actual = torch_fcn(input0, input1)
|
|
if half_prec:
|
|
input0 = input0.to(torch.float)
|
|
input1 = input1.to(torch.float)
|
|
expected = scipy_fcn(input0.cpu().numpy(), input1.cpu().numpy())
|
|
expected = torch.from_numpy(expected).to(dtype)
|
|
self.assertEqual(actual, expected)
|
|
|
|
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
|
|
@dtypes(torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@onlyNativeDeviceTypes
|
|
def test_igamma_common(self, device, dtype):
|
|
# test igamma for reasonable range of values
|
|
loglo = -4 # approx 0.018
|
|
loghi = 4 # approx 54.6
|
|
self._helper_test_igamma(
|
|
loglo, loghi, device, dtype, torch.igamma, scipy.special.gammainc
|
|
)
|
|
|
|
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
|
|
@dtypes(torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
@onlyNativeDeviceTypes
|
|
def test_igammac_common(self, device, dtype):
|
|
# test igammac for reasonable range of values
|
|
loglo = -4 # approx 0.018
|
|
loghi = 4 # approx 54.6
|
|
self._helper_test_igamma(
|
|
loglo, loghi, device, dtype, torch.igammac, scipy.special.gammaincc
|
|
)
|
|
|
|
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
|
|
@dtypes(torch.float32, torch.float64)
|
|
@onlyNativeDeviceTypes
|
|
def test_igamma_edge_cases(self, device, dtype):
|
|
tkwargs = {"dtype": dtype, "device": device}
|
|
infs = torch.zeros((3,), **tkwargs) + float("inf")
|
|
zeros = torch.zeros((3,), **tkwargs)
|
|
ones = torch.ones((3,), **tkwargs)
|
|
zero_to_large = torch.tensor([0.0, 1.0, 1e3], **tkwargs)
|
|
small_to_inf = torch.tensor([1e-3, 1.0, float("inf")], **tkwargs)
|
|
nans = torch.zeros((3,), **tkwargs) + float("nan")
|
|
inp_outs = [
|
|
# (a , x), out
|
|
((zeros, small_to_inf), ones),
|
|
((small_to_inf, zeros), zeros),
|
|
((infs, zero_to_large), zeros),
|
|
((zero_to_large, infs), ones),
|
|
((zeros, zeros), nans),
|
|
((infs, infs), nans),
|
|
((-small_to_inf, small_to_inf), nans),
|
|
]
|
|
for inputs, output in inp_outs:
|
|
input0, input1 = inputs
|
|
calc = torch.igamma(input0, input1)
|
|
if torch.all(torch.isnan(output)):
|
|
self.assertTrue(torch.all(torch.isnan(calc)))
|
|
else:
|
|
self.assertEqual(calc, output)
|
|
|
|
@dtypesIfCPU(torch.float16, torch.bfloat16, torch.float32, torch.float64)
|
|
@dtypes(torch.float32, torch.float64)
|
|
@onlyNativeDeviceTypes
|
|
def test_igammac_edge_cases(self, device, dtype):
|
|
tkwargs = {"dtype": dtype, "device": device}
|
|
infs = torch.zeros((3,), **tkwargs) + float("inf")
|
|
zeros = torch.zeros((3,), **tkwargs)
|
|
ones = torch.ones((3,), **tkwargs)
|
|
zero_to_large = torch.tensor([0.0, 1.0, 1e3], **tkwargs)
|
|
small_to_inf = torch.tensor([1e-3, 1.0, float("inf")], **tkwargs)
|
|
nans = torch.zeros((3,), **tkwargs) + float("nan")
|
|
inp_outs = [
|
|
# (a , x), out
|
|
((zeros, small_to_inf), zeros),
|
|
((small_to_inf, zeros), ones),
|
|
((infs, zero_to_large), ones),
|
|
((zero_to_large, infs), zeros),
|
|
((zeros, zeros), nans),
|
|
((infs, infs), nans),
|
|
((-small_to_inf, small_to_inf), nans),
|
|
]
|
|
for inputs, output in inp_outs:
|
|
input0, input1 = inputs
|
|
calc = torch.igammac(input0, input1)
|
|
if torch.all(torch.isnan(output)):
|
|
self.assertTrue(torch.all(torch.isnan(calc)))
|
|
else:
|
|
self.assertEqual(calc, output)
|
|
|
|
def _i0_helper(self, t):
|
|
# Test by comparing to scipy
|
|
dtype = t.dtype
|
|
actual = torch.i0(t)
|
|
if dtype is torch.bfloat16:
|
|
t = t.to(torch.float32)
|
|
expected = scipy.special.i0(t.cpu().numpy())
|
|
# Casting down for dtype float16 is required since scipy upcasts to float32
|
|
if dtype is torch.bfloat16 or dtype is torch.float16:
|
|
expected = torch.from_numpy(expected).to(dtype)
|
|
self.assertEqual(actual, expected)
|
|
|
|
def _i0_range_helper(self, range, device, dtype):
|
|
# i0 tests are broken up by the domain for which the function does not overflow for each dtype
|
|
# This is done to ensure that the function performs well across all possible input values, without worrying
|
|
# about inf or nan possibilities
|
|
for r in (range, -range):
|
|
t = torch.rand(1000, device=device).to(dtype) * r
|
|
self._i0_helper(t)
|
|
|
|
@dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_i0_range1(self, device, dtype):
|
|
# This tests the domain for i0 for which float16 does not overflow
|
|
# The domain is (-13.25, 13.25)
|
|
self._i0_range_helper(13.25, device, dtype)
|
|
|
|
@dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_i0_range2(self, device, dtype):
|
|
# This tests the domain for i0 for which float32 and bfloat16 does not overflow
|
|
# The domain is (-88.5, 88.5)
|
|
self._i0_range_helper(88.5, device, dtype)
|
|
|
|
@dtypes(torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_i0_range3(self, device, dtype):
|
|
# This tests the domain for i0 for which float64 does not overflow
|
|
# The domain is (-709.75, 709.75)
|
|
self._i0_range_helper(709.75, device, dtype)
|
|
|
|
@dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_i0_special(self, device, dtype):
|
|
t = torch.tensor([], device=device, dtype=dtype)
|
|
self._i0_helper(t)
|
|
|
|
t = torch.tensor([inf, -inf, nan], device=device, dtype=dtype)
|
|
self.assertTrue(torch.i0(t).isnan().all())
|
|
|
|
@dtypesIfCUDA(*floating_types_and(torch.half, torch.bfloat16))
|
|
@dtypes(torch.bfloat16, torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_special_i0_i1_vs_scipy(self, device, dtype):
|
|
def check_equal(t, torch_fn, scipy_fn):
|
|
# Test by comparing to scipy
|
|
actual = torch_fn(t)
|
|
if dtype is torch.bfloat16:
|
|
t = t.to(torch.float32)
|
|
expected = scipy_fn(t.cpu().numpy())
|
|
|
|
# Casting down for dtype float16 is required since scipy upcasts to float32
|
|
if dtype is torch.bfloat16 or dtype is torch.float16:
|
|
expected = torch.from_numpy(expected).to(dtype)
|
|
self.assertEqual(actual, expected)
|
|
|
|
t = torch.tensor([], device=device, dtype=dtype)
|
|
check_equal(t, torch.i0, scipy.special.i0)
|
|
check_equal(t, torch.special.i0e, scipy.special.i0e)
|
|
if dtype not in [torch.half, torch.bfloat16]:
|
|
check_equal(t, torch.special.i1, scipy.special.i1)
|
|
check_equal(t, torch.special.i1e, scipy.special.i1e)
|
|
|
|
range = (-1e7, 1e7)
|
|
if dtype == torch.half:
|
|
range = (-65000, 65000)
|
|
|
|
t = torch.linspace(*range, int(1e4), device=device, dtype=dtype)
|
|
check_equal(t, torch.i0, scipy.special.i0)
|
|
check_equal(t, torch.special.i0e, scipy.special.i0e)
|
|
if dtype not in [torch.half, torch.bfloat16]:
|
|
check_equal(t, torch.special.i1, scipy.special.i1)
|
|
check_equal(t, torch.special.i1e, scipy.special.i1e)
|
|
|
|
# NaN, inf, -inf are tested in reference_numerics tests.
|
|
info = torch.finfo(dtype)
|
|
min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
|
|
t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
|
|
check_equal(t, torch.i0, scipy.special.i0)
|
|
check_equal(t, torch.special.i0e, scipy.special.i0e)
|
|
if dtype not in [torch.half, torch.bfloat16]:
|
|
check_equal(t, torch.special.i1, scipy.special.i1)
|
|
check_equal(t, torch.special.i1e, scipy.special.i1e)
|
|
|
|
@dtypes(torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_special_ndtr_vs_scipy(self, device, dtype):
|
|
def check_equal(t):
|
|
# Test by comparing to scipy
|
|
actual = torch.special.ndtr(t)
|
|
expected = scipy.special.ndtr(t.cpu().numpy())
|
|
self.assertEqual(actual, expected)
|
|
|
|
range = (-10, 10)
|
|
t = torch.linspace(*range, 1, device=device, dtype=dtype)
|
|
check_equal(t)
|
|
|
|
# Skip testing NaN, inf, -inf since they are tested in reference_numerics tests.
|
|
info = torch.finfo(dtype)
|
|
min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
|
|
t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
|
|
check_equal(t)
|
|
|
|
@dtypes(torch.float32, torch.float64)
|
|
@unittest.skipIf(not TEST_SCIPY, "SciPy not found")
|
|
def test_special_log_ndtr_vs_scipy(self, device, dtype):
|
|
def check_equal(t):
|
|
# Test by comparing with scipy
|
|
actual = torch.special.log_ndtr(t)
|
|
expected = scipy.special.log_ndtr(t.cpu().numpy())
|
|
self.assertEqual(actual, expected)
|
|
|
|
# Skip testing NaN, inf, -inf since they are tested in reference_numerics tests.
|
|
info = torch.finfo(dtype)
|
|
min, max, eps, tiny = info.min, info.max, info.eps, info.tiny
|
|
t = torch.tensor([min, max, eps, tiny], dtype=dtype, device=device)
|
|
check_equal(t)
|
|
|
|
# TODO: allow large opinfo values to be opted-into via metadata
|
|
@dtypes(torch.long)
|
|
def test_abs_big_number(self, device, dtype):
|
|
bignumber = 2**31 + 1
|
|
res = torch.tensor([bignumber], device=device, dtype=dtype)
|
|
self.assertGreater(res.abs()[0], 0)
|
|
|
|
# TODO: add signed zero testing to opinfos
|
|
@dtypes(torch.float, torch.double)
|
|
def test_abs_signed_zero(self, device, dtype):
|
|
# Both abs(0.0) and abs(-0.0) should result in 0.0
|
|
size = 128 + 1 # pick a large enough number with remainder so that
|
|
# both vectorized and nonvectorized op is tested
|
|
inp = torch.zeros(size, device=device, dtype=dtype)
|
|
inp[::2] = -0.0
|
|
inp = inp.abs()
|
|
for v in inp:
|
|
self.assertGreater(math.copysign(1.0, v), 0.0)
|
|
|
|
# TODO: update to compare against NumPy by rationalizing with OpInfo
|
|
@onlyCUDA
|
|
@dtypes(torch.float, torch.double)
|
|
def test_abs_zero(self, device, dtype):
|
|
# Both abs(0.0) and abs(-0.0) should result in 0.0
|
|
abs_zeros = torch.tensor([0.0, -0.0], device=device, dtype=dtype).abs().tolist()
|
|
for num in abs_zeros:
|
|
self.assertGreater(math.copysign(1.0, num), 0.0)
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.bool, torch.int8)
|
|
def test_narrow_dtypes(self, device, dtype):
|
|
x_int = torch.randint(2, (8 * 1024,), device=device, dtype=torch.int)
|
|
x = x_int.to(dtype)
|
|
# check normal conversion
|
|
self.assertEqual(x_int, x.int())
|
|
x.fill_(0)
|
|
self.assertEqual(x.sum(), 0)
|
|
# test unaligned tensor with non-round number of elements
|
|
x[1:4000].fill_(1)
|
|
self.assertEqual(x.sum(), 3999)
|
|
|
|
@dtypes(*all_types_and_complex_and(torch.half, torch.bfloat16))
|
|
def test_isposinf_isneginf_non_boolean_output(self, device, dtype):
|
|
# test non-boolean tensors as the `out=` parameters
|
|
# boolean outputs are tested in the above testcases
|
|
vals = (float("inf"), -float("inf"), 1.2)
|
|
t = torch.tensor(vals, device=device)
|
|
for torch_op in (torch.isposinf, torch.isneginf):
|
|
out = torch.empty_like(t, dtype=dtype)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "does not support non-boolean outputs"
|
|
):
|
|
torch_op(t, out=out)
|
|
|
|
def test_nonzero_empty(self, device):
|
|
def assert_tuple_empty(tup, dim):
|
|
self.assertEqual(dim, len(tup))
|
|
for t in tup:
|
|
self.assertEqual(torch.Size([0]), t.shape)
|
|
|
|
x = torch.randn(0, 2, 0, 5, 0, device=device)
|
|
y = torch.nonzero(x)
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
|
|
self.assertEqual(0, y.numel())
|
|
self.assertEqual(torch.Size([0, 5]), y.shape)
|
|
assert_tuple_empty(z, 5)
|
|
|
|
x = torch.tensor(0.5, device=device)
|
|
y = torch.nonzero(x)
|
|
# nonzero with as_tuple returns a
|
|
# tuple of len 1 for a zero-dim tensor.
|
|
# This is done to match Numpy behavior.
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
self.assertEqual(1, len(z))
|
|
self.assertEqual(torch.zeros(1, dtype=torch.long), z[0])
|
|
|
|
x = torch.zeros((), device=device)
|
|
y = torch.nonzero(x)
|
|
z = torch.nonzero(x, as_tuple=True)
|
|
self.assertEqual(torch.Size([0, 0]), y.shape)
|
|
self.assertEqual(1, len(z))
|
|
self.assertEqual(torch.empty(0, dtype=torch.long), z[0])
|
|
|
|
@onlyCUDA
|
|
@dtypes(torch.int8)
|
|
@largeTensorTest("8GB")
|
|
@skipIfRocm(msg="ROCM tries to allocate 60GB")
|
|
def test_nonzero_large(self, device, dtype):
|
|
indices = (
|
|
torch.tensor((0, 2, 3, 4, 6, 100, 103, 2**30, 2**31 - 3, 2**31 - 2)),
|
|
torch.tensor((0, 1, 1, 1, 0, 1, 0, 1, 0, 0)),
|
|
)
|
|
|
|
x = torch.zeros(2**31 - 1, 2, device=device, dtype=dtype)
|
|
x[indices[0], indices[1]] = 1
|
|
y = torch.nonzero(x, as_tuple=True)
|
|
self.assertEqual(y, indices)
|
|
x = x.view(-1).fill_(0)
|
|
indices = indices[0] * 2
|
|
x[indices] = 1
|
|
y = torch.nonzero(x)
|
|
self.assertEqual(y.view(-1), indices)
|
|
|
|
def test_nonzero_static(self, device):
|
|
# invalid size
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "nonzero_static: 'size' must be an non-negative integer"
|
|
):
|
|
torch.nonzero_static(torch.tensor([8], device=device), size=-2)
|
|
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "nonzero_static: 'size' must be an non-negative integer"
|
|
):
|
|
torch.nonzero_static(
|
|
torch.tensor([8], device=device),
|
|
size=-2,
|
|
out=torch.tensor(0, device=device),
|
|
)
|
|
|
|
# nonzero_static.out: out dtype mismatch
|
|
input_tensor = torch.tensor([8], device=device)
|
|
static_size = 1
|
|
out_tensor = torch.empty(
|
|
(static_size, input_tensor.dim()), dtype=torch.float, device=device
|
|
)
|
|
with self.assertRaisesRegex(
|
|
RuntimeError, "nonzero_static: Expected out tensor to have scalar type Long"
|
|
):
|
|
torch.nonzero_static(input_tensor, size=static_size, out=out_tensor)
|
|
|
|
# nonzero_static.out: out resize (shrink)
|
|
input_tensor = torch.tensor([8], device=device)
|
|
static_size = 1
|
|
out_tensor = torch.empty((10, 10, 10, 10), dtype=torch.long, device=device)
|
|
ref = torch.tensor([[0]], device=device)
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size, out=out_tensor), ref
|
|
)
|
|
self.assertEqual(out_tensor, ref)
|
|
|
|
# nonzero_static.out: out resize (enlarge)
|
|
input_tensor = torch.tensor([8], device=device)
|
|
static_size = 1
|
|
out_tensor = torch.empty((0), dtype=torch.long, device=device)
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size, out=out_tensor), ref
|
|
)
|
|
self.assertEqual(out_tensor, ref)
|
|
|
|
# 0 rank
|
|
input_tensor = torch.tensor(6, device=device)
|
|
static_size = 2
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size),
|
|
torch.empty(
|
|
(static_size, input_tensor.dim()), device=device, dtype=torch.long
|
|
),
|
|
)
|
|
|
|
# 0 size
|
|
input_tensor = torch.tensor([[[1]]], device=device)
|
|
static_size = 0
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size),
|
|
torch.empty(
|
|
(static_size, input_tensor.dim()), device=device, dtype=torch.long
|
|
),
|
|
)
|
|
|
|
# empty input
|
|
# https://github.com/pytorch/pytorch/issues/162473
|
|
input_tensor = torch.tensor([], device=device)
|
|
static_size = 1
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size),
|
|
torch.tensor([[-1]], device=device),
|
|
)
|
|
|
|
# 1D input
|
|
input_tensor = torch.tensor([0, 8], device=device)
|
|
static_size = 1
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size),
|
|
torch.tensor([[1]], device=device),
|
|
)
|
|
|
|
input_tensor = torch.tensor([8, 0], device=device)
|
|
static_size = 2
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size),
|
|
torch.tensor(
|
|
[[0], [-1]], device=device
|
|
), # padded with default fill_value "-1"
|
|
)
|
|
|
|
# 2D input
|
|
input_tensor = torch.tensor([[1.2, 0], [3.4, 5.6]], device=device)
|
|
static_size = 5
|
|
fill_value = -100
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size, fill_value=fill_value),
|
|
torch.tensor(
|
|
[
|
|
[0, 0],
|
|
[1, 0],
|
|
[1, 1],
|
|
[fill_value, fill_value],
|
|
[fill_value, fill_value],
|
|
],
|
|
device=device,
|
|
),
|
|
)
|
|
input_tensor = torch.tensor([[1.2, 0], [3.4, 5.6]], device=device)
|
|
static_size = 2
|
|
fill_value = -100
|
|
self.assertEqual(
|
|
torch.nonzero_static(input_tensor, size=static_size, fill_value=fill_value),
|
|
torch.tensor([[0, 0], [1, 0]], device=device),
|
|
)
|
|
|
|
# 3D input
|
|
input_tensor = torch.tensor(
|
|
[[[0, 0], [0, -3]], [[0, 0], [5, 0]]], device=device
|
|
)
|
|
static_size = 4
|
|
fill_value = -999
|
|
self.assertEqual(
|
|
torch.nonzero_static(
|
|
input_tensor,
|
|
size=static_size,
|
|
fill_value=fill_value,
|
|
),
|
|
torch.tensor(
|
|
[
|
|
[0, 1, 1],
|
|
[1, 1, 0],
|
|
[fill_value, fill_value, fill_value],
|
|
[fill_value, fill_value, fill_value],
|
|
],
|
|
device=device,
|
|
),
|
|
)
|
|
|
|
@onlyCUDA
|
|
def test_nonzero_static_large(self, device):
|
|
# large enough to have multiple iters per SM even on H100
|
|
# with 132 sms
|
|
size_inp = 1024 * 16 * 132 + 1024 * 16
|
|
x = torch.zeros(size_inp, device=device)
|
|
# unique indices
|
|
indices = torch.randperm(size_inp, device=device)[: size_inp // 2]
|
|
sorted, _ = torch.sort(indices)
|
|
x[sorted] = 1
|
|
res = torch.nonzero_static(x, size=size_inp // 2).view(-1)
|
|
self.assertEqual(res, sorted)
|
|
# no oob writes
|
|
out = torch.full((size_inp,), 10, device=device, dtype=torch.int64)
|
|
res = torch.nonzero_static(x, size=size_inp // 4, out=out[: size_inp // 2])
|
|
self.assertEqual(out[: size_inp // 4], sorted[: size_inp // 4])
|
|
self.assertEqual(
|
|
out[size_inp // 4 :],
|
|
torch.tensor(10, device="cuda").expand_as(out[size_inp // 4 :]),
|
|
)
|
|
# correct fill for 2d
|
|
x = x.view(2, size_inp // 2)
|
|
ref = x.nonzero()
|
|
res = x.nonzero_static(size=size_inp // 2 + 2)
|
|
self.assertEqual(res.shape, [size_inp // 2 + 2, 2])
|
|
self.assertEqual(ref, res[: size_inp // 2])
|
|
self.assertEqual(
|
|
res[size_inp // 2 :],
|
|
torch.tensor(-1, device="cuda").expand_as(res[size_inp // 2 :]),
|
|
)
|
|
|
|
# TODO: rationalize with exp OpInfo
|
|
|
|
@dtypes(*floating_and_complex_types_and(torch.bfloat16))
|
|
@dtypesIfCUDA(*floating_and_complex_types_and(torch.half, torch.bfloat16))
|
|
def test_exp(self, device, dtype):
|
|
for v in (2, -2) + ((1j, 1 + 1j) if dtype.is_complex else ()):
|
|
a = (
|
|
torch.tensor(v, dtype=dtype, device=device)
|
|
* torch.arange(18, device=device)
|
|
/ 3
|
|
* math.pi
|
|
)
|
|
a = a.to(dtype)
|
|
# bfloat16 overflows
|
|
if dtype == torch.bfloat16:
|
|
return
|
|
self.compare_with_numpy(torch.exp, np.exp, a)
|
|
|
|
if dtype.is_complex:
|
|
inf_real_zero_imag_in = torch.tensor(
|
|
complex(float("inf"), 0), device=device, dtype=dtype
|
|
)
|
|
inf_real_zero_imag_out = torch.exp(inf_real_zero_imag_in).item()
|
|
self.assertTrue(math.isinf(inf_real_zero_imag_out.real))
|
|
if self.device_type == "cpu":
|
|
pass
|
|
# These are commented out because it cannot be consistently reproduced.
|
|
# This is incorrect. It should be zero. Need fix!
|
|
# https://github.com/pytorch/pytorch/issues/40590
|
|
# self.assertNotEqual(inf_real_zero_imag_out.imag, 0)
|
|
# This is incorrect. They should equal. Need fix!
|
|
# https://github.com/pytorch/pytorch/issues/40590
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
|
|
else:
|
|
self.assertEqual(inf_real_zero_imag_out.imag, 0, atol=0, rtol=0)
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_zero_imag_in)
|
|
|
|
zero_real_inf_imag_in = torch.tensor(
|
|
complex(0, float("inf")), device=device, dtype=dtype
|
|
)
|
|
zero_real_inf_imag_out = torch.exp(zero_real_inf_imag_in).item()
|
|
self.assertTrue(math.isnan(zero_real_inf_imag_out.real))
|
|
self.assertTrue(math.isnan(zero_real_inf_imag_out.imag))
|
|
# Ensure we are notified when NumPy changes its behavior
|
|
self.compare_with_numpy(torch.exp, np.exp, zero_real_inf_imag_in)
|
|
|
|
inf_real_imag_in = torch.tensor(
|
|
complex(float("inf"), float("inf")), device=device, dtype=dtype
|
|
)
|
|
inf_real_imag_out = torch.exp(inf_real_imag_in).item()
|
|
if self.device_type == "cpu":
|
|
pass
|
|
# This is incorrect. Need fix! https://github.com/pytorch/pytorch/issues/40590
|
|
# This is commented out because it cannot be consistently reproduced.
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
|
|
else:
|
|
self.assertTrue(math.isinf(inf_real_imag_out.real))
|
|
self.assertTrue(math.isnan(inf_real_imag_out.imag))
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_imag_in)
|
|
|
|
inf_real_nan_imag_in = torch.tensor(
|
|
complex(float("inf"), float("nan")), device=device, dtype=dtype
|
|
)
|
|
inf_real_nan_imag_out = torch.exp(inf_real_nan_imag_in).item()
|
|
if self.device_type == "cpu":
|
|
pass
|
|
# This is incorrect. It should be inf. Need fix! https://github.com/pytorch/pytorch/issues/40590
|
|
# This is commented out because it cannot be consistently reproduced.
|
|
# with self.assertRaises(AssertionError):
|
|
# self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
|
|
else:
|
|
self.assertTrue(math.isinf(inf_real_nan_imag_out.real))
|
|
self.assertTrue(math.isnan(inf_real_nan_imag_out.imag))
|
|
self.compare_with_numpy(torch.exp, np.exp, inf_real_nan_imag_in)
|
|
|
|
nan_real_inf_imag_in = torch.tensor(
|
|
complex(float("nan"), float("inf")), device=device, dtype=dtype
|
|
)
|
|
nan_real_inf_imag_out = torch.exp(nan_real_inf_imag_in).item()
|
|
self.assertTrue(math.isnan(nan_real_inf_imag_out.real))
|
|
self.assertTrue(math.isnan(nan_real_inf_imag_out.imag))
|
|
# Ensure we are notified when NumPy changes its behavior
|
|
self.compare_with_numpy(torch.exp, np.exp, nan_real_inf_imag_in)
|
|
|
|
|
|
instantiate_device_type_tests(TestUnaryUfuncs, globals())
|
|
|
|
if __name__ == "__main__":
|
|
run_tests()
|