pytorch/test/profiler/test_execution_trace.py
linhaifeng 695cb0d342 [2/N][Fix] Fix typo in test folder (#166374)
Fix typo in test folder.

_typos.toml
```bash
[default.extend-words]
nd = "nd"
arange = "arange"
Nd = "Nd"
GLOBALs = "GLOBALs"
hte = "hte"
iy = "iy"
PN = "PN"
Dout = "Dout"
optin = "optin"
gam = "gam"
PTD = "PTD"
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/166374
Approved by: https://github.com/cyyever, https://github.com/ezyang
2025-10-29 03:02:07 +00:00

784 lines
30 KiB
Python

# Owner(s): ["oncall: profiler"]
import json
import os
import tempfile
import unittest
from typing import Any
import numpy as np
import torch
import torch.nn as nn
from torch import _dynamo as torchdynamo
from torch.autograd import (
_record_function_with_args_enter,
_record_function_with_args_exit,
)
from torch.profiler import (
ExecutionTraceObserver,
kineto_available,
profile,
record_function,
supported_activities,
)
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_device_type import (
instantiate_device_type_tests,
skipCPUIf,
)
from torch.testing._internal.common_utils import (
IS_WINDOWS,
run_tests,
skipIfHpu,
skipIfTorchDynamo,
TEST_HPU,
TEST_XPU,
TestCase,
)
from torch.utils._triton import has_triton
# if tqdm is not shutdown properly, it will leave the monitor thread alive.
# This causes an issue in the multithreading test because we check all events
# in that test with their tids. The events that correspond to these lingering
# threads all have TID of (uint64_t)(-1) which is invalid.
# The work around is turning off monitoring thread when tqdm is loaded.
# Since these are unit tests, it is safe to turn off monitor thread.
try:
import tqdm
tqdm.tqdm.monitor_interval = 0
except ImportError:
pass
Json = dict[str, Any]
class TestExecutionTrace(TestCase):
def payload(self, device, use_device=False):
u = torch.randn(3, 4, 5, requires_grad=True)
with record_function("## TEST 1 ##", "1, 2, 3"):
inf_val = float("inf")
neg_inf_val = float("-inf")
nan_val = float("nan")
rf_handle = _record_function_with_args_enter(
"## TEST 2 ##",
1,
False,
2.5,
[u, u],
(u, u),
"hello",
u,
inf_val,
neg_inf_val,
nan_val,
)
x = torch.randn(10, 10, requires_grad=True)
if use_device:
x = x.to(device)
y = torch.randn(10, 10, requires_grad=True)
if use_device:
y = y.to(device)
z = x + y + x * y + x * y
z.backward(z)
gelu = nn.GELU()
m = torch.randn(2)
_ = gelu(m)
if use_device:
z = z.cpu()
_record_function_with_args_exit(rf_handle)
def get_execution_trace_root(self, output_file_name) -> Json:
import gzip
nodes = []
with (
gzip.open(output_file_name)
if output_file_name.endswith(".gz")
else open(output_file_name)
) as f:
et_graph = json.load(f)
assert "nodes" in et_graph
nodes = et_graph["nodes"]
return nodes
def get_execution_trace_rf_ids(self, nodes: list[Json]) -> list[int]:
"""Returns a sorted list of rf_id (record function ids) in execution trace"""
def get_rf_id(node):
attrs = node["attrs"]
for a in attrs:
if a["name"] == "rf_id":
return a["value"]
return None
rf_ids_ = (
get_rf_id(n)
for n in nodes
if n["name"] != "[pytorch|profiler|execution_trace|process]"
and n["name"] != "[pytorch|profiler|execution_trace|thread]"
)
return sorted(rf_id for rf_id in rf_ids_ if rf_id is not None)
def get_kineto_rf_ids(self, events: list[Json]) -> list[int]:
"""Returns a sorted list of Record function IDs for CPU operators and user annotations"""
ops_and_annotations = (
e for e in events if e.get("cat", "") in ["cpu_op", "user_annotation"]
)
return sorted(
e.get("args", {}).get("Record function id", -1) for e in ops_and_annotations
)
@unittest.skipIf(not kineto_available(), "Kineto is required")
@skipIfHpu
@skipIfTorchDynamo("profiler gets ignored if dynamo activated")
def test_execution_trace_with_kineto(self, device):
trace_called_num = 0
def trace_handler(p):
nonlocal trace_called_num
trace_called_num += 1
use_device = (
torch.profiler.ProfilerActivity.CUDA
or torch.profiler.ProfilerActivity.XPU in supported_activities()
or torch.profiler.ProfilerActivity.HPU in supported_activities()
)
# Create a temp file to save execution trace and kineto data.
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
fp.close()
kt = tempfile.NamedTemporaryFile(
mode="w+t", suffix=".kineto.json", delete=False
)
kt.close()
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
skip_first=3, wait=1, warmup=1, active=2, repeat=1
),
on_trace_ready=trace_handler,
execution_trace_observer=(
ExecutionTraceObserver().register_callback(fp.name)
),
) as p:
for idx in range(10):
with record_function(f"## LOOP {idx} ##"):
self.payload(device, use_device=use_device)
p.step()
self.assertEqual(fp.name, p.execution_trace_observer.get_output_file_path())
# Uncomment for debugging
# print("Output kineto = ", kt.name)
# print("Output ET = ", fp.name)
p.export_chrome_trace(kt.name)
self.assertEqual(trace_called_num, 1)
nodes = self.get_execution_trace_root(fp.name)
loop_count = 0
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
self.assertTrue(found_root_node)
# Since profiler trace is active for 2 iterations
self.assertEqual(loop_count, 2)
# Compare the collected Execution Trace and Kineto Trace
# in terms of record func ID (rf_id) and External IDs
# both of these should match for the same trace window.
with open(kt.name) as f:
kineto = json.load(f)
events = kineto["traceEvents"]
# Look up rf_ids in both Execution and Kineto trace as two lists.
rf_ids_et = self.get_execution_trace_rf_ids(nodes)
rf_ids_kineto = self.get_kineto_rf_ids(events)
self.assertCountEqual(rf_ids_et, rf_ids_kineto)
self.assertListEqual(
rf_ids_et,
rf_ids_kineto,
msg=f"ET and kineto rf_id should exactly match\n"
f" rf_ids_et = {rf_ids_et}\n"
f" rf_ids_kineto = {rf_ids_kineto}\n",
)
@unittest.skipIf(not kineto_available(), "Kineto is required")
@skipIfHpu
@skipIfTorchDynamo("profiler gets ignored if dynamo activated")
def test_execution_trace_env_enabled_with_kineto(self, device):
import os
os.environ["ENABLE_PYTORCH_EXECUTION_TRACE"] = "1"
os.environ["ENABLE_PYTORCH_EXECUTION_TRACE_EXTRAS"] = "1"
trace_called_num = 0
def trace_handler(p):
nonlocal trace_called_num
trace_called_num += 1
use_device = (
torch.profiler.ProfilerActivity.CUDA
or torch.profiler.ProfilerActivity.XPU in supported_activities()
or torch.profiler.ProfilerActivity.HPU in supported_activities()
)
# Create a temp file to save kineto data.
kt = tempfile.NamedTemporaryFile(
mode="w+t", suffix=".kineto.json", delete=False
)
kt.close()
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
skip_first=3, wait=1, warmup=1, active=2, repeat=1
),
on_trace_ready=trace_handler,
) as p:
for idx in range(10):
with record_function(f"## LOOP {idx} ##"):
self.payload(device, use_device=use_device)
p.step()
# Uncomment for debugging
# print("Output kineto = ", kt.name)
# print("Output ET = ", fp.name)
p.export_chrome_trace(kt.name)
self.assertEqual(trace_called_num, 1)
et_path = p.execution_trace_observer.get_output_file_path()
et_res_path = p.execution_trace_observer.get_resources_dir(et_path)
# the path should be set up due to our env variables
self.assertTrue(et_path is not None)
# et_res_path should be an empty directory
self.assertTrue(os.path.isdir(et_res_path))
self.assertEqual(len(os.listdir(et_res_path)), 0)
# Compare the collected Execution Trace and Kineto Trace
# in terms of record func
nodes = self.get_execution_trace_root(et_path)
loop_count = 0
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
self.assertTrue(found_root_node)
# Since profiler trace is active for 2 iterations
self.assertEqual(loop_count, 2)
# Compare the collected Execution Trace and Kineto Trace
# in terms of record func ID (rf_id) and External IDs
# both of these should match for the same trace window.
with open(kt.name) as f:
kineto = json.load(f)
events = kineto["traceEvents"]
# Look up rf_ids in both Execution and Kineto trace as two lists.
rf_ids_et = self.get_execution_trace_rf_ids(nodes)
rf_ids_kineto = self.get_kineto_rf_ids(events)
self.assertCountEqual(rf_ids_et, rf_ids_kineto)
self.assertListEqual(
rf_ids_et,
rf_ids_kineto,
msg=f"ET and kineto rf_id should exactly match\n"
f" rf_ids_et = {rf_ids_et}\n"
f" rf_ids_kineto = {rf_ids_kineto}\n",
)
def test_execution_trace_alone(self, device):
use_device = (
torch.profiler.ProfilerActivity.CUDA
or torch.profiler.ProfilerActivity.HPU in supported_activities()
or torch.profiler.ProfilerActivity.XPU in supported_activities()
)
# Create a temp file to save execution trace data.
# Use a gzip file to test compression codepath
fp = tempfile.NamedTemporaryFile("w", suffix=".et.json.gz", delete=False)
fp.close()
expected_loop_events = 0
et = ExecutionTraceObserver().register_callback(fp.name)
et.start()
for idx in range(5):
expected_loop_events += 1
with record_function(f"## LOOP {idx} ##"):
self.payload(device, use_device=use_device)
et.stop()
assert fp.name == et.get_output_file_path()
et.unregister_callback()
nodes = self.get_execution_trace_root(fp.name)
loop_count = 0
# Expected tensor object tuple size, in th form of:
# [tensor_id, storage_id, offset, numel, itemsize, device_str]
tensor_tuple_size = 6
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
# Check if tensor tuple representation size is correct.
if n["name"] == "## TEST 2 ##":
assert len(n["inputs"]["values"][3][0]) == tensor_tuple_size
assert found_root_node
assert loop_count == expected_loop_events
def test_execution_trace_env_disabled(self, device):
import os
os.environ["ENABLE_PYTORCH_EXECUTION_TRACE"] = "0"
os.environ["ENABLE_PYTORCH_EXECUTION_TRACE_EXTRAS"] = "0"
use_device = (
torch.profiler.ProfilerActivity.CUDA
or torch.profiler.ProfilerActivity.HPU in supported_activities()
or torch.profiler.ProfilerActivity.XPU in supported_activities()
)
with profile(
activities=torch.profiler.supported_activities(),
record_shapes=True,
schedule=torch.profiler.schedule(
skip_first=3, wait=1, warmup=1, active=2, repeat=1
),
) as p:
for idx in range(10):
with record_function(f"## LOOP {idx} ##"):
self.payload(device, use_device=use_device)
p.step()
self.assertTrue(p.execution_trace_observer is None)
@unittest.skipIf(IS_WINDOWS, "torch.compile does not support WINDOWS")
@unittest.skipIf(
(not has_triton()) or (not TEST_CUDA and not TEST_XPU),
"need triton and device(CUDA or XPU) availability to run",
)
@skipCPUIf(True, "skip CPU device for testing profiling triton")
def test_execution_trace_with_pt2(self, device):
@torchdynamo.optimize("inductor")
def fn(a, b, c):
x = torch.nn.functional.linear(a, b)
x = x + c
return x.cos()
a, b, c = (torch.randn(4, 4, requires_grad=True).to(device) for _ in range(3))
inputs = [a, b, c]
with torch._inductor.config.patch(compile_threads=1):
fn(*inputs)
# Create a temp file to save execution trace data.
fp = tempfile.NamedTemporaryFile("w+t", suffix="_et.json", delete=False)
fp.close()
et = ExecutionTraceObserver()
et.register_callback(fp.name)
et.set_extra_resource_collection(True)
with profile(
activities=torch.profiler.supported_activities(),
record_shapes=True,
schedule=torch.profiler.schedule(
skip_first=3, wait=1, warmup=1, active=2, repeat=1
),
execution_trace_observer=et,
) as p:
for idx in range(10):
with record_function(f"## LOOP {idx} ##"):
fn(*inputs)
p.step()
nodes = self.get_execution_trace_root(fp.name)
found_captured_triton_kernel_node = False
found_call_compiled_fx_graph = False
for n in nodes:
assert "name" in n
if "triton_" in n["name"]:
for attr in n["attrs"]:
if attr["name"] == "kernel_file" and attr["value"] != "":
found_captured_triton_kernel_node = True
assert len(n["inputs"]["values"]) > 0
assert len(n["outputs"]["values"]) == 0
elif "Call CompiledFxGraph" in n["name"]:
found_call_compiled_fx_graph = True
assert found_captured_triton_kernel_node
assert found_call_compiled_fx_graph
@unittest.skipIf(IS_WINDOWS, "torch.compile does not support WINDOWS")
@unittest.skipIf(
(not has_triton()) or (not TEST_CUDA and not TEST_XPU),
"need triton and device(CUDA or XPU) availability to run",
)
@skipCPUIf(True, "skip CPU device for testing profiling triton")
def test_execution_trace_env_enabled_with_pt2(self, device):
# clean up the local cache for triton kernel
from torch._inductor.codecache import PyCodeCache
PyCodeCache.cache_clear(purge=True)
import os
os.environ["ENABLE_PYTORCH_EXECUTION_TRACE"] = "1"
os.environ["ENABLE_PYTORCH_EXECUTION_TRACE_EXTRAS"] = "1"
@torchdynamo.optimize("inductor")
def fn(a, b, c):
x = torch.nn.functional.linear(a, b)
x = x + c
return x.cos()
a, b, c = (torch.randn(4, 4, requires_grad=True).to(device) for _ in range(3))
inputs = [a, b, c]
with torch._inductor.config.patch(
compile_threads=1, fx_graph_cache=False, fx_graph_remote_cache=False
):
fn(*inputs)
with profile(
activities=torch.profiler.supported_activities(),
record_shapes=True,
schedule=torch.profiler.schedule(
skip_first=3, wait=1, warmup=1, active=2, repeat=1
),
) as p:
for idx in range(10):
with record_function(f"## LOOP {idx} ##"):
fn(*inputs)
p.step()
et_path = p.execution_trace_observer.get_output_file_path()
et_res_path = p.execution_trace_observer.get_resources_dir(et_path)
# the path should be set up due to our env variables
self.assertTrue(et_path is not None)
# et_res_path should be an empty directory
self.assertTrue(os.path.isdir(et_res_path))
self.assertEqual(len(os.listdir(et_res_path)), 2)
nodes = self.get_execution_trace_root(et_path)
found_captured_triton_kernel_node = False
for n in nodes:
assert "name" in n
if "triton_" in n["name"]:
for attr in n["attrs"]:
if attr["name"] == "kernel_file" and attr["value"] != "":
found_captured_triton_kernel_node = True
assert len(n["inputs"]["values"]) > 0
assert len(n["outputs"]["values"]) == 0
assert found_captured_triton_kernel_node
@unittest.skipIf(IS_WINDOWS, "torch.compile does not support WINDOWS")
@unittest.skipIf(
(not has_triton()) or (not TEST_CUDA and not TEST_XPU),
"need triton and device(CUDA or XPU) availability to run",
)
@skipCPUIf(True, "skip CPU device for testing profiling triton")
def test_triton_fx_graph_with_et(self, device):
# clean up the local cache for triton kernel
from torch._inductor.codecache import PyCodeCache
PyCodeCache.cache_clear(purge=True)
import os
@torchdynamo.optimize("inductor")
def fn(a, b, c):
x = torch.nn.functional.linear(a, b)
x = x.sin()
x = x.t() + c * 1111
return x.cos()
a, b, c = (
torch.randn(4, 4, requires_grad=False).to(torch.device("cuda:0"))
for _ in range(3)
)
inputs = [a, b, c]
with torch._inductor.config.patch(
compile_threads=1, fx_graph_cache=False, fx_graph_remote_cache=False
):
fn(*inputs)
fp = tempfile.NamedTemporaryFile("w+t", suffix="fx_graph_et.json", delete=False)
fp.close()
et = ExecutionTraceObserver()
et.register_callback(fp.name)
et.set_extra_resource_collection(True)
with profile(
activities=torch.profiler.supported_activities(),
record_shapes=True,
schedule=torch.profiler.schedule(
skip_first=0, wait=1, warmup=1, active=1, repeat=1
),
execution_trace_observer=et,
) as p:
for idx in range(10):
with record_function(f"## LOOP {idx} ##"):
fn(*inputs)
p.step()
et_path = p.execution_trace_observer.get_output_file_path()
et_res_path = p.execution_trace_observer.get_resources_dir(et_path)
# the path should be set up due to our env variables
self.assertTrue(et_path is not None)
# et_res_path should be an empty directory
self.assertTrue(os.path.isdir(et_res_path))
for filename in os.listdir(et_res_path):
file_path = os.path.join(et_res_path, filename)
if os.path.isfile(file_path):
with open(file_path) as file:
fx_graph_found = False
fx_graph = []
for line in file:
line = line.strip()
# There are two files in the directory, one is the source
# code of the triton kernel, and the other is the source code for FX graph.
# Only the FX graph file contains the string "# Graph fragment:".
if line.startswith("# Graph fragment:"):
fx_graph_found = True
elif fx_graph_found and line.startswith("#"):
fx_graph.append(line)
else:
fx_graph_found = False
if len(fx_graph) > 0:
assert (
fx_graph[0]
== '# %mm : Tensor "f32[4, 4][4, 1]cuda:0" = PlaceHolder[target=mm]'
)
assert (
fx_graph[1]
== '# %arg2_1 : Tensor "f32[4, 4][4, 1]cuda:0" = PlaceHolder[target=arg2_1]'
)
assert (
fx_graph[2]
== '# %sin : Tensor "f32[4, 4][4, 1]cuda:0"[num_users=1] = call_function[target=torch.ops.aten.sin.default](args = (%mm,), kwargs = {})' # noqa: B950
)
assert (
fx_graph[3]
== '# %permute_1 : Tensor "f32[4, 4][1, 4]cuda:0"[num_users=1] = call_function[target=torch.ops.aten.permute.default](args = (%sin, [1, 0]), kwargs = {})' # noqa: B950
)
assert (
fx_graph[4]
== '# %mul : Tensor "f32[4, 4][4, 1]cuda:0"[num_users=1] = call_function[target=torch.ops.aten.mul.Tensor](args = (%arg2_1, 1111), kwargs = {})' # noqa: B950
)
assert (
fx_graph[5]
== '# %add : Tensor "f32[4, 4][1, 4]cuda:0"[num_users=1] = call_function[target=torch.ops.aten.add.Tensor](args = (%permute_1, %mul), kwargs = {})' # noqa: B950
)
assert (
fx_graph[6]
== '# %cos : Tensor "f32[4, 4][1, 4]cuda:0"[num_users=1] = call_function[target=torch.ops.aten.cos.default](args = (%add,), kwargs = {})' # noqa: B950
)
assert fx_graph[7] == "# return %cos"
def test_execution_trace_start_stop(self, device):
use_device = (
torch.profiler.ProfilerActivity.CUDA
or torch.profiler.ProfilerActivity.XPU in supported_activities()
or torch.profiler.ProfilerActivity.HPU in supported_activities()
)
# Create a temp file to save execution trace data.
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
fp.close()
expected_loop_events = 0
et = ExecutionTraceObserver().register_callback(fp.name)
for idx in range(10):
if idx == 3:
et.start()
elif idx == 5:
et.stop()
elif idx == 8:
et.start()
elif idx == 9:
et.stop()
if et._execution_trace_running:
expected_loop_events += 1
with record_function(f"## LOOP {idx} ##"):
self.payload(device, use_device=use_device)
assert fp.name == et.get_output_file_path()
et.unregister_callback()
nodes = self.get_execution_trace_root(fp.name)
loop_count = 0
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
found_root_node = True
if n["name"].startswith("## LOOP "):
loop_count += 1
assert found_root_node
assert loop_count == expected_loop_events
def test_execution_trace_repeat_in_loop(self, device):
use_device = (
torch.profiler.ProfilerActivity.CUDA
or torch.profiler.ProfilerActivity.XPU in supported_activities()
or torch.profiler.ProfilerActivity.HPU in supported_activities()
)
iter_list = {3, 4, 6, 8}
expected_loop_events = len(iter_list)
output_files = []
for idx in range(10):
if idx in iter_list:
# Create a temp file to save execution trace data.
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
fp.close()
output_files.append(fp.name)
et = ExecutionTraceObserver().register_callback(fp.name)
et.start()
with record_function(f"## LOOP {idx} ##"):
self.payload(device, use_device=use_device)
if idx in iter_list:
et.stop()
et.unregister_callback()
event_count = 0
for et_file in output_files:
nodes = self.get_execution_trace_root(et_file)
found_root_node = False
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
assert n["id"] == 1
found_root_node = True
if n["name"].startswith("## LOOP "):
event_count += 1
assert found_root_node
assert event_count == expected_loop_events
def test_execution_trace_no_capture(self):
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
fp.close()
et = ExecutionTraceObserver().register_callback(fp.name)
assert fp.name == et.get_output_file_path()
et.unregister_callback()
nodes = self.get_execution_trace_root(fp.name)
for n in nodes:
assert "name" in n
if "[pytorch|profiler|execution_trace|process]" in n["name"]:
found_root_node = True
assert found_root_node
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/124500")
def test_execution_trace_nested_tensor(self):
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
fp.close()
observer = ExecutionTraceObserver().register_callback(fp.name)
def fn(nt):
return nt.sin().cos()
with torch.profiler.profile(execution_trace_observer=observer):
for i in range(3):
values = torch.rand((8 + i, 4 + i))
offsets = torch.tensor([0, 2, 4, 6, 8 + i])
nt = torch.nested.nested_tensor_from_jagged(values, offsets)
fn(nt)
nodes = self.get_execution_trace_root(fp.name)
found_cos = False
for n in nodes:
assert "name" in n
if "cos" in n["name"]:
found_cos = True
assert found_cos
@unittest.skipIf(
not TEST_CUDA,
"need CUDA device availability to run",
)
def test_execution_trace_record_integral_tensor_range(self):
fp = tempfile.NamedTemporaryFile("w+t", suffix=".et.json", delete=False)
fp.close()
os.environ["ENABLE_PYTORCH_EXECUTION_TRACE_SAVE_INTEGRAL_TENSOR_RANGE"] = "1"
t1 = torch.tensor([[1, 2], [3, 4]]).cuda()
t2 = torch.tensor([[0, 0], [1, 0]]).cuda()
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
skip_first=0, wait=0, warmup=0, active=1, repeat=1
),
record_shapes=True,
execution_trace_observer=(
ExecutionTraceObserver().register_callback(fp.name)
),
) as p:
torch.gather(t1, 1, t2)
p.step()
nodes = self.get_execution_trace_root(fp.name)
for n in nodes:
assert "name" in n
if "aten::gather" in n["name"]:
for attr in n["attrs"]:
if attr["name"] == "tensor_range":
assert attr["value"] == '{"0":[1,4],"1":[0,1]}'
@unittest.skipIf(
not TEST_CUDA,
"need CUDA device availability to run",
)
def test_execution_trace_record_integral_tensor_data(self):
with tempfile.TemporaryDirectory() as temp_dir:
fp_name = os.path.join(temp_dir, "test.et.json")
os.environ["ENABLE_PYTORCH_EXECUTION_TRACE_SAVE_INTEGRAL_TENSOR_DATA"] = (
"aten::gather"
)
et = ExecutionTraceObserver()
et.register_callback(fp_name)
et.set_extra_resource_collection(True)
t1 = torch.tensor([[1, 2], [3, 4]]).cuda()
t2 = torch.tensor([[0, 0], [1, 0]]).cuda()
with profile(
activities=supported_activities(),
schedule=torch.profiler.schedule(
skip_first=0, wait=0, warmup=0, active=1, repeat=1
),
record_shapes=True,
execution_trace_observer=et,
) as p:
torch.gather(t1, 1, t2)
p.step()
resourceDir = fp_name.replace(".json", "_resources")
assert os.path.exists(resourceDir + "/nid_4_tid_0.dat")
assert os.path.exists(resourceDir + "/nid_4_tid_1.dat")
t1 = np.fromfile(resourceDir + "/nid_4_tid_0.dat", dtype=np.int64)
t2 = np.fromfile(resourceDir + "/nid_4_tid_1.dat", dtype=np.int64)
assert (t1 == np.array([1, 2, 3, 4])).all()
assert (t2 == np.array([0, 0, 1, 0])).all()
devices = ["cpu", "cuda"]
if TEST_XPU:
devices.append("xpu")
if TEST_HPU:
devices.append("hpu")
instantiate_device_type_tests(
TestExecutionTrace, globals(), allow_xpu="xpu" in devices, only_for=devices
)
if __name__ == "__main__":
run_tests()