mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
Partially addresses https://github.com/pytorch/pytorch/issues/123062 Ran lintrunner on: test/mobile Detail: ```Shell $ lintrunner -a --take UFMT --all-files ok No lint issues. Successfully applied all patches. ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/123521 Approved by: https://github.com/shink, https://github.com/ezyang
36 lines
1003 B
Python
36 lines
1003 B
Python
import torch
|
|
|
|
|
|
# https://pytorch.org/docs/stable/torch.html#random-sampling
|
|
|
|
|
|
class SamplingOpsModule(torch.nn.Module):
|
|
def forward(self):
|
|
a = torch.empty(3, 3).uniform_(0.0, 1.0)
|
|
size = (1, 4)
|
|
weights = torch.tensor([0, 10, 3, 0], dtype=torch.float)
|
|
return len(
|
|
# torch.seed(),
|
|
# torch.manual_seed(0),
|
|
torch.bernoulli(a),
|
|
# torch.initial_seed(),
|
|
torch.multinomial(weights, 2),
|
|
torch.normal(2.0, 3.0, size),
|
|
torch.poisson(a),
|
|
torch.rand(2, 3),
|
|
torch.rand_like(a),
|
|
torch.randint(10, size),
|
|
torch.randint_like(a, 4),
|
|
torch.rand(4),
|
|
torch.randn_like(a),
|
|
torch.randperm(4),
|
|
a.bernoulli_(),
|
|
a.cauchy_(),
|
|
a.exponential_(),
|
|
a.geometric_(0.5),
|
|
a.log_normal_(),
|
|
a.normal_(),
|
|
a.random_(),
|
|
a.uniform_(),
|
|
)
|