pytorch/c10/metal/reduction_utils.h
Nikita Shulga e2a5c42e7e [BE][MPS] Build metal kernels of MacOS-14+ (#159733)
Which makes `#if __METAL_VERSION__ >= 310` guards for `bfloat` use support unnecessary.
Rename `kernels_bfloat.metallib` into `kernels_basic` and remove custom build/selection logic.

Part of https://github.com/pytorch/pytorch/issues/159275
Pull Request resolved: https://github.com/pytorch/pytorch/pull/159733
Approved by: https://github.com/dcci
ghstack dependencies: #159731, #159732
2025-08-03 20:53:58 +00:00

360 lines
11 KiB
C++

#pragma once
#include <c10/metal/utils.h>
#include <metal_compute>
namespace c10 {
namespace metal {
namespace detail {
template <typename T>
struct simd_type {
using t = T;
};
// Helper that allows one to run simd ops over bfl16 by upcasting them to fp32
template <typename T>
using simd_type_t = typename simd_type<T>::t;
template <>
struct simd_type<bfloat> {
using t = float;
};
} // namespace detail
template <typename T>
inline ::metal::enable_if_t<!::metal::is_same_v<T, long>, T> simd_sum(T val) {
return T(::metal::simd_sum(detail::simd_type_t<T>(val)));
}
template <typename T>
inline ::metal::enable_if_t<!::metal::is_same_v<T, long>, T> simd_prod(T val) {
return T(::metal::simd_product(detail::simd_type_t<T>(val)));
}
// Extend simd_broadcast to 64-bit integral types using int2 trick
template <
typename T,
::metal::enable_if_t<::metal::is_integral_v<T> && sizeof(T) == 8, bool> =
true>
inline T simd_broadcast(T val, ushort lane_id) {
return as_type<T>(::metal::simd_broadcast(as_type<int2>(val), lane_id));
}
template <
typename T,
::metal::enable_if_t<!::metal::is_integral_v<T> || sizeof(T) != 8, bool> =
true>
inline T simd_broadcast(T val, ushort lane_id) {
return ::metal::simd_broadcast(val, lane_id);
}
// Floating simd_min/max with nan propagation
template <
typename T,
::metal::enable_if_t<::metal::is_floating_point_v<T>, bool> = true>
inline T simd_max(T val) {
if (::metal::simd_any(::metal::isnan(val))) {
return ::metal::numeric_limits<T>::quiet_NaN();
}
return T(::metal::simd_max(detail::simd_type_t<T>(val)));
}
template <
typename T,
::metal::enable_if_t<::metal::is_floating_point_v<T>, bool> = true>
inline T simd_min(T val) {
if (::metal::simd_any(::metal::isnan(val))) {
return ::metal::numeric_limits<T>::quiet_NaN();
}
return T(::metal::simd_min(detail::simd_type_t<T>(val)));
}
template <
typename T,
::metal::enable_if_t<::metal::is_integral_v<T> && sizeof(T) != 8, bool> =
true>
inline T simd_max(T val) {
return ::metal::simd_max(val);
}
template <
typename T,
::metal::enable_if_t<::metal::is_integral_v<T> && sizeof(T) != 8, bool> =
true>
inline T simd_min(T val) {
return ::metal::simd_min(val);
}
// Metal does not support SIMD reductions over 64-bit types, but it could be
// implement using simd_shuffle_down, that yields result in log2(simdgroup_size)
// iterations Use fill variant, as shuffle down returns garbage if inactive
// thread is referenced (on M1/M2, works fine on M4) and broadcast result to all
// threads in the end. Implementation heavily borrows from
// https://github.com/ml-explore/mlx/blob/86389bf9707f46101af45d90510e8e97c8a90b93/mlx/backend/metal/kernels/reduction/ops.h#L16
template <typename T>
inline ::metal::enable_if_t<::metal::is_same_v<T, long>, T> simd_sum(T val) {
for (ushort i = simdgroup_size / 2; i > 0; i /= 2) {
val += as_type<T>(
::metal::simd_shuffle_and_fill_down(as_type<int2>(val), int2(0), i));
}
return simd_broadcast(val, 0);
}
template <typename T>
inline ::metal::enable_if_t<::metal::is_same_v<T, long>, T> simd_prod(T val) {
for (ushort i = simdgroup_size / 2; i > 0; i /= 2) {
val *= as_type<T>(
::metal::simd_shuffle_and_fill_down(as_type<int2>(val), int2(0), i));
}
return simd_broadcast(val, 0);
}
template <typename T>
inline ::metal::enable_if_t<::metal::is_same_v<T, long>, T> simd_max(T val) {
for (ushort i = simdgroup_size / 2; i > 0; i /= 2) {
val = ::metal::max(
val,
as_type<T>(::metal::simd_shuffle_and_fill_down(
as_type<int2>(val), int2(0), i)));
}
return simd_broadcast(val, 0);
}
template <typename T>
inline ::metal::enable_if_t<::metal::is_same_v<T, long>, T> simd_min(T val) {
for (ushort i = simdgroup_size / 2; i > 0; i /= 2) {
val = ::metal::min(
val,
as_type<T>(::metal::simd_shuffle_and_fill_down(
as_type<int2>(val), int2(0), i)));
}
return simd_broadcast(val, 0);
}
// argmin/argmax helpers using simd_ballot
template <
typename T,
::metal::enable_if_t<::metal::is_integral_v<T>, bool> = true>
inline ::c10::metal::pair<T, ushort> simd_argmin(T val) {
const auto rc = simd_min(val);
const auto vote = ::metal::simd_ballot(val == rc);
return {rc, static_cast<ushort>(::metal::ctz(static_cast<ulong>(vote)))};
}
template <
typename T,
::metal::enable_if_t<::metal::is_floating_point_v<T>, bool> = true>
inline ::c10::metal::pair<T, ushort> simd_argmin(T val) {
const auto rc = simd_min(val);
const auto vote = ::metal::simd_ballot(val == rc || ::metal::isnan(val));
return {rc, static_cast<ushort>(::metal::ctz(static_cast<ulong>(vote)))};
}
template <
typename T,
::metal::enable_if_t<::metal::is_integral_v<T>, bool> = true>
inline ::c10::metal::pair<T, ushort> simd_argmax(T val) {
const auto rc = simd_max(val);
const auto vote = ::metal::simd_ballot(val == rc);
return {rc, static_cast<ushort>(::metal::ctz(static_cast<ulong>(vote)))};
}
template <
typename T,
::metal::enable_if_t<::metal::is_floating_point_v<T>, bool> = true>
inline ::c10::metal::pair<T, ushort> simd_argmax(T val) {
const auto rc = simd_max(val);
const auto vote = ::metal::simd_ballot(val == rc || ::metal::isnan(val));
return {rc, static_cast<ushort>(::metal::ctz(static_cast<ulong>(vote)))};
}
template <typename ARG_T, typename IDX_T>
inline c10::metal::pair<ARG_T, IDX_T> simd_argmin(ARG_T val, IDX_T idx_val) {
auto rc = simd_argmin(val);
return {rc.first, simd_broadcast(idx_val, rc.second)};
}
template <typename ARG_T, typename IDX_T>
inline c10::metal::pair<ARG_T, IDX_T> simd_argmax(ARG_T val, IDX_T idx_val) {
auto rc = simd_argmax(val);
return {rc.first, simd_broadcast(idx_val, rc.second)};
}
// Below algorithms are written with hardcoded assumption that simdgroup is 32
// and threadgroup_max is 1024, i.e. reduction can be done in two stages max
template <typename T>
opmath_t<T> threadgroup_sum(
threadgroup opmath_t<T>* data,
T val,
unsigned idx,
unsigned size) {
auto rc = simd_sum(static_cast<opmath_t<T>>(val));
if (idx % simdgroup_size == 0) {
data[idx / simdgroup_size] = rc;
}
if (size > simdgroup_size) {
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
if (idx < ((size + simdgroup_size - 1) / simdgroup_size)) {
auto rc1 = simd_sum(data[idx]);
if (idx == 0) {
data[0] = rc1;
}
}
}
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
return data[0];
}
template <typename T>
opmath_t<T> threadgroup_prod(
threadgroup opmath_t<T>* data,
T val,
unsigned idx,
unsigned size) {
auto rc = simd_prod(static_cast<opmath_t<T>>(val));
if (idx % simdgroup_size == 0) {
data[idx / simdgroup_size] = rc;
}
if (size > simdgroup_size) {
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
if (idx < ((size + simdgroup_size - 1) / simdgroup_size)) {
auto rc1 = simd_prod(data[idx]);
if (idx == 0) {
data[0] = rc1;
}
}
}
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
return data[0];
}
template <typename T>
T threadgroup_max(threadgroup T* data, T val, unsigned idx, unsigned size) {
auto rc = simd_max(val);
if (idx % simdgroup_size == 0) {
data[idx / simdgroup_size] = rc;
}
if (size > simdgroup_size) {
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
if (idx < ((size + simdgroup_size - 1) / simdgroup_size)) {
auto rc1 = simd_max(data[idx]);
if (idx == 0) {
data[0] = rc1;
}
}
}
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
return data[0];
}
template <typename T>
T threadgroup_min(threadgroup T* data, T val, unsigned idx, unsigned size) {
auto rc = simd_min(val);
if (idx % simdgroup_size == 0) {
data[idx / simdgroup_size] = rc;
}
if (size > simdgroup_size) {
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
if (idx < ((size + simdgroup_size - 1) / simdgroup_size)) {
auto rc1 = simd_min(data[idx]);
if (idx == 0) {
data[0] = rc1;
}
}
}
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
return data[0];
}
template <typename T>
float3 threadgroup_welford_reduce(threadgroup T* data, unsigned size) {
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
float m = data[0];
float m2 = 0;
for (unsigned idx = 1; idx < size; ++idx) {
float delta = data[idx] - m;
m += delta / (idx + 1);
m2 += delta * (data[idx] - m);
}
return float3(m, m2, size);
}
// Each vec3type is tuple of mean, m2 and weight
template <typename T>
float3 welford_combine(T a, T b) {
float delta = b.x - a.x;
float new_weight = a.z + b.z;
auto w2_over_w = new_weight != 0 ? b.z / new_weight : 0.0;
return float3(
a.x + delta * w2_over_w,
a.y + b.y + delta * delta * a.z * w2_over_w,
new_weight);
}
template <typename T>
float3 threadgroup_welford_combine(threadgroup T* data, unsigned size) {
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
float3 rc = data[0];
for (unsigned idx = 1; idx < size; ++idx) {
rc = welford_combine(rc, data[idx]);
}
return rc;
}
template <typename ARG_T, typename IDX_T>
IDX_T threadgroup_argmax(
threadgroup ARG_T* arg_data,
threadgroup IDX_T* idx_data,
ARG_T val,
IDX_T idx_val,
unsigned idx,
unsigned size) {
auto rc = simd_argmax(val, idx_val);
if (size <= simdgroup_size) {
return rc.second;
}
if (idx % simdgroup_size == 0) {
arg_data[idx / simdgroup_size] = rc.first;
idx_data[idx / simdgroup_size] = rc.second;
}
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
if (idx < ((size + simdgroup_size - 1) / simdgroup_size)) {
auto rc1 = simd_argmax(arg_data[idx], idx_data[idx]);
if (idx == 0) {
idx_data[0] = rc1.second;
}
}
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
return idx_data[0];
}
template <typename ARG_T, typename IDX_T>
IDX_T threadgroup_argmin(
threadgroup ARG_T* arg_data,
threadgroup IDX_T* idx_data,
ARG_T val,
IDX_T idx_val,
unsigned idx,
unsigned size) {
auto rc = simd_argmin(val, idx_val);
if (size <= simdgroup_size) {
return rc.second;
}
if (idx % simdgroup_size == 0) {
arg_data[idx / simdgroup_size] = rc.first;
idx_data[idx / simdgroup_size] = rc.second;
}
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
if (idx < ((size + simdgroup_size - 1) / simdgroup_size)) {
auto rc1 = simd_argmin(arg_data[idx], idx_data[idx]);
if (idx == 0) {
idx_data[0] = rc1.second;
}
}
::metal::threadgroup_barrier(::metal::mem_flags::mem_threadgroup);
return idx_data[0];
}
} // namespace metal
} // namespace c10