mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-06 12:20:52 +01:00
The list of added operators: add_, addcmul, arange, baddbmm…, bmm, clamp, div, div_, gelu, index_add, logical_and, mul_, sub_, topk, where This pull request is the same as a previous one: https://github.com/pytorch/pytorch/pull/145121 which inadvertently got deleted while merging. Pull Request resolved: https://github.com/pytorch/pytorch/pull/145625 Approved by: https://github.com/jeffdaily
47 lines
1.1 KiB
Python
47 lines
1.1 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for topk operator"""
|
|
|
|
|
|
topk_configs_short = op_bench.config_list(
|
|
attr_names=["shape", "k", "dim"],
|
|
attrs=[
|
|
[(16, 4), 4, 1],
|
|
[(1024 * 1024,), 16, 0],
|
|
],
|
|
cross_product_configs={"device": ["cpu"], "dtype": [torch.float]},
|
|
tags=["short"],
|
|
)
|
|
|
|
topk_configs_long = op_bench.cross_product_configs(
|
|
shape=[(64, 2), (1024 * 1024,), (128,)],
|
|
k=[1, 2, 4, 16, 32],
|
|
dim=[0],
|
|
device=["cpu", "cuda"],
|
|
dtype=[torch.float, torch.bfloat16],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class TopkBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, shape, k, dim, dtype, device):
|
|
self.inputs = {
|
|
"input": torch.randn(shape, device=device, dtype=dtype),
|
|
"k": k,
|
|
"dim": dim,
|
|
}
|
|
|
|
self.set_module_name("topk")
|
|
|
|
def forward(self, input, k, dim):
|
|
return torch.topk(input, k=k, dim=dim)
|
|
|
|
|
|
op_bench.generate_pt_test(topk_configs_short + topk_configs_long, TopkBenchmark)
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|