pytorch/benchmarks/operator_benchmark/pt/ternary_test.py
Arash Pakbin f3ddc08ddc Additional operators in operator benchmark (#145625)
The list of added operators:
add_, addcmul, arange, baddbmm…, bmm, clamp, div, div_, gelu, index_add, logical_and, mul_, sub_, topk, where

This pull request is the same as a previous one: https://github.com/pytorch/pytorch/pull/145121 which inadvertently got deleted while merging.

Pull Request resolved: https://github.com/pytorch/pytorch/pull/145625
Approved by: https://github.com/jeffdaily
2025-01-26 19:20:02 +00:00

58 lines
1.4 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for ternary operators."""
ternary_ops = op_bench.op_list(
attr_names=["op_name", "op_func"],
attrs=[
["addcmul", torch.addcmul],
["addcdiv", torch.addcdiv],
],
)
ternary_configs_short = op_bench.config_list(
attr_names=["M", "N"],
attrs=[
[1, 2],
[32, 64],
],
cross_product_configs={
"device": ["cpu"],
"dtype": [torch.float, torch.bfloat16],
},
tags=["short"],
)
ternary_configs_long = op_bench.cross_product_configs(
M=[8, 128],
N=[32, 64],
device=["cpu", "cuda"],
dtype=[torch.float, torch.bfloat16],
tags=["long"],
)
class TernaryOpBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, device, dtype, op_func):
self.inputs = {
"input_": torch.rand((M, N), device=device).to(dtype=dtype),
"tensor1": torch.rand((M, N), device=device).to(dtype=dtype),
"tensor2": torch.rand((M, N), device=device).to(dtype=dtype),
}
self.op_func = op_func
def forward(self, input_, tensor1, tensor2):
return self.op_func(input_, tensor1, tensor2)
op_bench.generate_pt_tests_from_op_list(
ternary_ops, ternary_configs_short + ternary_configs_long, TernaryOpBenchmark
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()