pytorch/benchmarks/operator_benchmark/pt/sum_test.py
Xuehai Pan c0ed38e644 [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
2024-07-17 14:34:42 +00:00

49 lines
1.3 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for sum reduction operator."""
# Configs for PT add operator
sum_configs = op_bench.cross_product_configs(
R=[64, 256], # Length of reduced dimension
V=[32, 512], # Length of other dimension
dim=[0, 1],
contiguous=[True, False],
device=["cpu", "cuda"],
tags=["short"],
) + op_bench.cross_product_configs(
R=[1024, 8192],
V=[512, 1024],
dim=[0, 1],
contiguous=[True, False],
device=["cpu", "cuda"],
tags=["long"],
)
class SumBenchmark(op_bench.TorchBenchmarkBase):
def init(self, R, V, dim, contiguous, device):
shape = (R, V) if dim == 0 else (V, R)
tensor = torch.rand(shape, device=device)
if not contiguous:
storage = torch.empty([s * 2 for s in shape], device=device)
storage[::2, ::2] = tensor
self.input_tensor = storage[::2, ::2]
else:
self.input_tensor = tensor
self.inputs = {"input_tensor": self.input_tensor, "dim": dim}
self.set_module_name("sum")
def forward(self, input_tensor, dim: int):
return input_tensor.sum(dim=dim)
op_bench.generate_pt_test(sum_configs, SumBenchmark)
if __name__ == "__main__":
op_bench.benchmark_runner.main()