mirror of
https://github.com/zebrajr/pytorch.git
synced 2025-12-07 12:21:27 +01:00
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter. You can review these PRs via: ```bash git diff --ignore-all-space --ignore-blank-lines HEAD~1 ``` Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754 Approved by: https://github.com/ezyang
68 lines
1.6 KiB
Python
68 lines
1.6 KiB
Python
import operator_benchmark as op_bench
|
|
|
|
import torch
|
|
|
|
|
|
"""Microbenchmarks for remainder operators."""
|
|
|
|
|
|
# Benchmark ops performance with broadcast
|
|
remainder_ops_list = op_bench.op_list(
|
|
attr_names=["op_name", "op_func"],
|
|
attrs=[
|
|
["fmod", torch.fmod],
|
|
["remainder", torch.remainder],
|
|
],
|
|
)
|
|
|
|
remainder_short_configs = op_bench.config_list(
|
|
attr_names=["M", "N", "K"],
|
|
attrs=[
|
|
[1, 1, 1],
|
|
[64, 64, 64],
|
|
[64, 64, 128],
|
|
],
|
|
cross_product_configs={
|
|
"device": ["cpu", "cuda"],
|
|
"dtype": [torch.int32, torch.float, torch.double],
|
|
},
|
|
tags=["short"],
|
|
)
|
|
|
|
remainder_long_configs = op_bench.cross_product_configs(
|
|
M=[8, 128],
|
|
N=[32, 64],
|
|
K=[256, 512],
|
|
device=["cpu", "cuda"],
|
|
dtype=[torch.int32, torch.float, torch.double],
|
|
tags=["long"],
|
|
)
|
|
|
|
|
|
class RemainderOpBenchmark(op_bench.TorchBenchmarkBase):
|
|
def init(self, M, N, K, device, dtype, op_func):
|
|
self.dividend = torch.rand(M, N, K, device=device)
|
|
self.dividend = (self.dividend * 1000 - 500).to(dtype=dtype)
|
|
|
|
self.divisor = torch.rand(M, N, K, device=device)
|
|
# +1 so we don't divide by zero
|
|
self.divisor = (self.divisor * 40 + 1).to(dtype=dtype)
|
|
|
|
self.inputs = {"dividend": self.dividend, "divisor": self.divisor}
|
|
|
|
self.op_func = op_func
|
|
|
|
def forward(self, dividend, divisor):
|
|
return self.op_func(dividend, divisor)
|
|
|
|
|
|
op_bench.generate_pt_tests_from_op_list(
|
|
remainder_ops_list,
|
|
remainder_short_configs + remainder_long_configs,
|
|
RemainderOpBenchmark,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
op_bench.benchmark_runner.main()
|