pytorch/benchmarks/operator_benchmark/pt/qinterpolate_test.py
Xuehai Pan c0ed38e644 [BE][Easy][3/19] enforce style for empty lines in import segments in benchmarks/ (#129754)
See https://github.com/pytorch/pytorch/pull/129751#issue-2380881501. Most changes are auto-generated by linter.

You can review these PRs via:

```bash
git diff --ignore-all-space --ignore-blank-lines HEAD~1
```

Pull Request resolved: https://github.com/pytorch/pytorch/pull/129754
Approved by: https://github.com/ezyang
2024-07-17 14:34:42 +00:00

68 lines
2.1 KiB
Python

import operator_benchmark as op_bench
import torch
"""Microbenchmarks for the quantized interpolate op.
Note: We are not benchmarking `upsample` as it is being deprecated, and calls
the `interpolate` anyway.
"""
qinterpolate_long_configs = op_bench.config_list(
attr_names=["M", "N", "K"],
attrs=[
[512, 512, 512],
],
cross_product_configs={
"dtype": [torch.quint8, torch.qint8, torch.qint32],
"mode": ["nearest", "bilinear"],
"scale": [0.5, 1.0, 2.0],
"contig": [True], # TODO: Add `False` after #29435
},
tags=["long"],
)
qinterpolate_short_configs = op_bench.config_list(
attr_names=["M", "N", "K", "dtype", "mode", "scale", "contig"],
attrs=[
[32, 32, 32, torch.quint8, "nearest", 0.5, True], # Downsample
[32, 32, 32, torch.quint8, "bilinear", 0.5, True], # Downsample
[32, 32, 32, torch.quint8, "nearest", 2.0, True], # Upsample
[32, 32, 32, torch.quint8, "bilinear", 2.0, True], # Upsample
[3, 720, 1280, torch.quint8, "bilinear", 0.83333, True], # Downsample
],
tags=["short"],
)
class QInterpolateBenchmark(op_bench.TorchBenchmarkBase):
def init(self, M, N, K, dtype, mode, scale, contig):
f_input = (torch.rand(1, M, N, K) - 0.5) * 256
scale = 0.1
zero_point = 42
self.q_input = torch.quantize_per_tensor(
f_input, scale=scale, zero_point=zero_point, dtype=dtype
)
if not contig:
permute_dims = list(range(self.q_input.ndim))[::-1]
self.q_input = self.q_input.permute(permute_dims)
self.inputs = {"q_input": self.q_input, "scale_factor": scale, "mode": mode}
self.set_module_name("q_interpolate")
def forward(self, q_input, scale_factor: float, mode: str):
return torch.nn.functional.interpolate(
q_input, scale_factor=scale_factor, mode=mode
)
op_bench.generate_pt_test(
qinterpolate_short_configs + qinterpolate_long_configs, QInterpolateBenchmark
)
if __name__ == "__main__":
op_bench.benchmark_runner.main()